Spelling suggestions: "subject:"deep ensembles"" "subject:"deep densembles""
1 |
Dataset Drift in Radar Warning Receivers : Out-of-Distribution Detection for Radar Emitter Classification using an RNN-based Deep EnsembleColeman, Kevin January 2023 (has links)
Changes to the signal environment of a radar warning receiver (RWR) over time through dataset drift can negatively affect a machine learning (ML) model, deployed for radar emitter classification (REC). The training data comes from a simulator at Saab AB, in the form of pulsed radar in a time-series. In order to investigate this phenomenon on a neural network (NN), this study first implements an underlying classifier (UC) in the form of a deep ensemble (DE), where each ensemble member consists of an NN with two independently trained bidirectional LSTM channels for each of the signal features pulse repetition interval (PRI), pulse width (PW) and carrier frequency (CF). From tests, the UC performs best for REC when using all three features. Because dataset drift can be treated as detecting out-of-distribution (OOD) samples over time, the aim is to reduce NN overconfidence on data from unseen radar emitters in order to enable OOD detection. The method estimates uncertainty with predictive entropy and classifies samples reaching an entropy larger than a threshold as OOD. In the first set of tests, OOD is defined from holding out one feature modulation from the training dataset, and choosing this as the only modulation in the OOD dataset used during testing. With this definition, Stagger and Jitter are most difficult to detect as OOD. Moreover, using DEs with 6 ensemble members and implementing LogitNorm to the architecture improves the OOD detection performance. Furthermore, the OOD detection method performs well for up to 300 emitter classes and predictive entropy outperforms the baseline for almost all tests. Finally, the model performs worse when OOD is simply defined as signals from unseen emitters, because of a precision decrease. In conclusion, the implemented changes managed to reduce the overconfidence for this particular NN, and improve OOD detection for REC.
|
2 |
Uncertainty Estimation for Deep Learning-based LPI Radar Classification : A Comparative Study of Bayesian Neural Networks and Deep Ensembles / Osäkerhetsskattning för LPI radarklassificering med djupa neurala nätverk : En jämförelsestudie av Bayesianska neurala nätverk och djupa ensemblerEkelund, Måns January 2021 (has links)
Deep Neural Networks (DNNs) have shown promising results in classifying known Low-probability-of-intercept (LPI) radar signals in noisy environments. However, regular DNNs produce low-quality confidence and uncertainty estimates, making them unreliable, which inhibit deployment in real-world settings. Hence, the need for robust uncertainty estimation methods has grown, and two categories emerged, Bayesian approximation and ensemble learning. As autonomous LPI radar classification is deployed in safety-critical environments, this study compares Bayesian Neural Networks (BNNs) and Deep Ensembles (DEs) as uncertainty estimation methods. We synthetically generate a training and test data set, as well as a shifted data set where subtle changes are made to the signal parameters. The methods are evaluated on predictive performance, relevant confidence and uncertainty estimation metrics, and method-related metrics such as model size, training, and inference time. Our results show that our DE achieves slightly higher predictive performance than the BNN on both in-distribution and shifted data with an accuracy of 74% and 32%, respectively. Further, we show that both methods exhibit more cautiousness in their predictions compared to a regular DNN for in-distribution data, while the confidence quality significantly degrades on shifted data. Uncertainty in predictions is evaluated as predictive entropy, and we show that both methods exhibit higher uncertainty on shifted data. We also show that the signal-to-noise ratio affects uncertainty compared to a regular DNN. However, none of the methods exhibit uncertainty when making predictions on unseen signal modulation patterns, which is not a desirable behavior. Further, we conclude that the amount of available resources could influence the choice of the method since DEs are resource-heavy, requiring more memory than a regular DNN or BNN. On the other hand, the BNN requires a far longer training time. / Tidigare studier har visat att djupa neurala nätverk (DNN) kan klassificera signalmönster för en speciell typ av radar (LPI) som är skapad för att vara svår att identifiera och avlyssna. Traditionella neurala nätverk saknar dock ett naturligt sätt att skatta osäkerhet, vilket skadar deras pålitlighet och förhindrar att de används i säkerhetskritiska miljöer. Osäkerhetsskattning för djupinlärning har därför vuxit och på senare tid blivit ett stort område med två tydliga kategorier, Bayesiansk approximering och ensemblemetoder. LPI radarklassificering är av stort intresse för försvarsindustrin, och tekniken kommer med största sannolikhet att appliceras i säkerhetskritiska miljöer. I denna studie jämför vi Bayesianska neurala nätverk och djupa ensembler för LPI radarklassificering. Resultaten från studien pekar på att en djup ensemble uppnår högre träffsäkerhet än ett Bayesianskt neuralt nätverk och att båda metoderna uppvisar återhållsamhet i sina förutsägelser jämfört med ett traditionellt djupt neuralt nätverk. Vi skattar osäkerhet som entropi och visar att osäkerheten i metodernas slutledningar ökar både på höga brusnivåer och på data som är något förskjuten från den kända datadistributionen. Resultaten visar dock att metodernas osäkerhet inte ökar jämfört med ett vanligt nätverk när de får se tidigare osedda signal mönster. Vi visar också att val av metod kan influeras av tillgängliga resurser, eftersom djupa ensembler kräver mycket minne jämfört med ett traditionellt eller Bayesianskt neuralt nätverk.
|
Page generated in 0.0565 seconds