• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uncertainty Estimation in Radiation Dose Prediction U-Net / Osäkerhetsskattning för stråldospredicerande U-Nets

Skarf, Frida January 2023 (has links)
The ability to quantify uncertainties associated with neural network predictions is crucial when they are relied upon in decision-making processes, especially in safety-critical applications like radiation therapy. In this paper, a single-model estimator of both epistemic and aleatoric uncertainties in a regression 3D U-net used for radiation dose prediction is presented. To capture epistemic uncertainty, Monte Carlo Dropout is employed, leveraging dropout during test-time inference to obtain a distribution of predictions. The variability among these predictions is used to estimate the model’s epistemic uncertainty. For quantifying aleatoric uncertainty quantile regression, which models conditional quantiles of the output distribution, is used. The method enables the estimation of prediction intervals of a user-specified significance level, where the difference between the upper and lower bound of the interval quantifies the aleatoric uncertainty. The proposed approach is evaluated on two datasets of prostate and breast cancer patient geometries and corresponding radiation doses. Results demonstrate that the quantile regression method provides well-calibrated prediction intervals, allowing for reliable aleatoric uncertainty estimation. Furthermore, the epistemic uncertainty obtained through Monte Carlo Dropout proves effective in identifying out-of-distribution examples, highlighting its usefulness for detecting anomalous cases where the model makes uncertain predictions. / Förmågan att kvantifiera osäkerheter i samband med neurala nätverksprediktioner är avgörande när de åberopas i beslutsprocesser, särskilt i säkerhetskritiska tillämpningar såsom strålterapi. I denna rapport presenteras en en-modellsimplementation för att uppskatta både epistemiska och aleatoriska osäkerheter i ett 3D regressions-U-net som används för att prediktera stråldos. För att fånga epistemisk osäkerhet används Monte Carlo Dropout, som utnyttjar dropout under testtidsinferens för att få en fördelning av prediktioner. Variabiliteten mellan dessa prediktioner används för att uppskatta modellens epistemiska osäkerhet. För att kvantifiera den aleatoriska osäkerheten används kvantilregression, eller quantile regression, som modellerar de betingade kvantilerna i outputfördelningen. Metoden möjliggör uppskattning av prediktionsintervall med en användardefinierad signifikansnivå, där skillnaden mellan intervallets övre och undre gräns kvantifierar den aleatoriska osäkerheten. Den föreslagna metoden utvärderas på två dataset innehållandes geometrier för prostata- och bröstcancerpatienter och korresponderande stråldoser. Resultaten visar på att kvantilregression ger välkalibrerade prediktionsintervall, vilket tillåter en tillförlitlig uppskattning av den aleatoriska osäkerheten. Dessutom visar sig den epistemiska osäkerhet som erhålls genom Monte Carlo Dropout vara användbar för att identifiera datapunkter som inte tillhör samma fördelning som träningsdatan, vilket belyser dess lämplighet för att upptäcka avvikande datapunkter där modellen gör osäkra prediktioner.
2

Uncertainty Estimation for Deep Learning-based LPI Radar Classification : A Comparative Study of Bayesian Neural Networks and Deep Ensembles / Osäkerhetsskattning för LPI radarklassificering med djupa neurala nätverk : En jämförelsestudie av Bayesianska neurala nätverk och djupa ensembler

Ekelund, Måns January 2021 (has links)
Deep Neural Networks (DNNs) have shown promising results in classifying known Low-probability-of-intercept (LPI) radar signals in noisy environments. However, regular DNNs produce low-quality confidence and uncertainty estimates, making them unreliable, which inhibit deployment in real-world settings. Hence, the need for robust uncertainty estimation methods has grown, and two categories emerged, Bayesian approximation and ensemble learning. As autonomous LPI radar classification is deployed in safety-critical environments, this study compares Bayesian Neural Networks (BNNs) and Deep Ensembles (DEs) as uncertainty estimation methods. We synthetically generate a training and test data set, as well as a shifted data set where subtle changes are made to the signal parameters. The methods are evaluated on predictive performance, relevant confidence and uncertainty estimation metrics, and method-related metrics such as model size, training, and inference time. Our results show that our DE achieves slightly higher predictive performance than the BNN on both in-distribution and shifted data with an accuracy of 74% and 32%, respectively. Further, we show that both methods exhibit more cautiousness in their predictions compared to a regular DNN for in-distribution data, while the confidence quality significantly degrades on shifted data. Uncertainty in predictions is evaluated as predictive entropy, and we show that both methods exhibit higher uncertainty on shifted data. We also show that the signal-to-noise ratio affects uncertainty compared to a regular DNN. However, none of the methods exhibit uncertainty when making predictions on unseen signal modulation patterns, which is not a desirable behavior. Further, we conclude that the amount of available resources could influence the choice of the method since DEs are resource-heavy, requiring more memory than a regular DNN or BNN. On the other hand, the BNN requires a far longer training time. / Tidigare studier har visat att djupa neurala nätverk (DNN) kan klassificera signalmönster för en speciell typ av radar (LPI) som är skapad för att vara svår att identifiera och avlyssna. Traditionella neurala nätverk saknar dock ett naturligt sätt att skatta osäkerhet, vilket skadar deras pålitlighet och förhindrar att de används i säkerhetskritiska miljöer. Osäkerhetsskattning för djupinlärning har därför vuxit och på senare tid blivit ett stort område med två tydliga kategorier, Bayesiansk approximering och ensemblemetoder. LPI radarklassificering är av stort intresse för försvarsindustrin, och tekniken kommer med största sannolikhet att appliceras i säkerhetskritiska miljöer. I denna studie jämför vi Bayesianska neurala nätverk och djupa ensembler för LPI radarklassificering. Resultaten från studien pekar på att en djup ensemble uppnår högre träffsäkerhet än ett Bayesianskt neuralt nätverk och att båda metoderna uppvisar återhållsamhet i sina förutsägelser jämfört med ett traditionellt djupt neuralt nätverk. Vi skattar osäkerhet som entropi och visar att osäkerheten i metodernas slutledningar ökar både på höga brusnivåer och på data som är något förskjuten från den kända datadistributionen. Resultaten visar dock att metodernas osäkerhet inte ökar jämfört med ett vanligt nätverk när de får se tidigare osedda signal mönster. Vi visar också att val av metod kan influeras av tillgängliga resurser, eftersom djupa ensembler kräver mycket minne jämfört med ett traditionellt eller Bayesianskt neuralt nätverk.
3

Robust Water Balance Modeling with Uncertain Discharge and Precipitation Data : Computational Geometry as a New Tool / Robust vattenbalansmodellering med osäkra vattenförings- och nederbördsdata : beräkningsgeometri som ett nytt verktyg

Guerrero, José-Luis January 2013 (has links)
Models are important tools for understanding the hydrological processes that govern water transport in the landscape and for prediction at times and places where no observations are available. The degree of trust placed on models, however, should not exceed the quality of the data they are fed with. The overall aim of this thesis was to tune the modeling process to account for the uncertainty in the data, by identifying robust parameter values using methods from computational geometry. The methods were developed and tested on data from the Choluteca River basin in Honduras. Quality control of precipitation and discharge data resulted in a rejection of 22% percent of daily raingage data and the complete removal of one out of the seven discharge stations analyzed. The raingage network was not found sufficient to capture the spatial and temporal variability of precipitation in the Choluteca River basin. The temporal variability of discharge was evaluated through a Monte Carlo assessment of the rating-equation parameter values over a moving time window of stage-discharge measurements. Al hydrometric stations showed considerable temporal variability in the stage-discharge relationship, which was largest for low flows, albeit with no common trend. The problem with limited data quality was addressed by identifying robust model parameter values within the set of well-performing (behavioral) parameter-value vectors with computational-geometry methods. The hypothesis that geometrically deep parameter-value vectors within the behavioral set were hydrologically robust was tested, and verified, using two depth functions. Deep parameter-value vectors tended to perform better than shallow ones, were less sensitive to small changes in their values, and were better suited to temporal transfer. Depth functions rank multidimensional data. Methods to visualize the multivariate distribution of behavioral parameters based on the ranked values were developed. It was shown that, by projecting along a common dimension, the multivariate distribution of behavioral parameters for models of varying complexity could be compared using the proposed visualization tools. This has a potential to aid in the selection of an adequate model structure considering the uncertainty in the data. These methods allowed to quantify observational uncertainties. Geometric methods have only recently begun to be used in hydrology. It was shown that they can be used to identify robust parameter values, and some of their potential uses were highlighted. / Modeller är viktiga verktyg för att förstå de hydrologiska processer som bestämmer vattnets transport i landskapet och för prognoser för tider och platser där det saknas mätdata. Graden av tillit till modeller bör emellertid inte överstiga kvaliteten på de data som de matas med. Det övergripande syftet med denna avhandling var att anpassa modelleringsprocessen så att den tar hänsyn till osäkerheten i data och identifierar robusta parametervärden med hjälp av metoder från beräkningsgeometrin. Metoderna var utvecklade och testades på data från Cholutecaflodens avrinningsområde i Honduras. Kvalitetskontrollen i nederbörds- och vattenföringsdata resulterade i att 22 % av de dagliga nederbördsobservationerna måste kasseras liksom alla data från en av sju analyserade vattenföringsstationer. Observationsnätet för nederbörd befanns otillräckligt för att fånga upp den rumsliga och tidsmässiga variabiliteten i den övre delen av Cholutecaflodens avrinningsområde. Vattenföringens tidsvariation utvärderades med en Monte Carlo-skattning av värdet på parametrarna i avbördningskurvan i ett rörligt tidsfönster av vattenföringsmätningar. Alla vattenföringsstationer uppvisade stor tidsvariation i avbördningskurvan som var störst för låga flöden, dock inte med någon gemensam trend. Problemet med den måttliga datakvaliteten bedömdes med hjälp av robusta modellparametervärden som identifierades med hjälp av beräkningsgeometriska metoder. Hypotesen att djupa parametervärdesuppsättningar var robusta testades och verifierades genom två djupfunktioner. Geometriskt djupa parametervärdesuppsättningar verkade ge bättre hydrologiska resultat än ytliga, var mindre känsliga för små ändringar i parametervärden och var bättre lämpade för förflyttning i tiden. Metoder utvecklades för att visualisera multivariata fördelningar av välpresterande parametrar baserade på de rangordnade värdena. Genom att projicera längs en gemensam dimension, kunde multivariata fördelningar av välpresterande parametrar hos modeller med varierande komplexitet jämföras med hjälp av det föreslagna visualiseringsverktyget. Det har alltså potentialen att bistå vid valet av en adekvat modellstruktur som tar hänsyn till osäkerheten i data. Dessa metoder möjliggjorde kvantifiering av observationsosäkerheter. Geometriska metoder har helt nyligen börjat användas inom hydrologin. I studien demonstrerades att de kan användas för att identifiera robusta parametervärdesuppsättningar och några av metodernas potentiella användningsområden belystes.

Page generated in 0.0855 seconds