• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 12
  • 12
  • 12
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development and Application of Big Data Analytics and Artificial Intelligence for Structural Health Monitoring and Metamaterial Design

Rih-Teng Wu (9293561) 26 August 2020 (has links)
<p>Recent advances in sensor technologies and data acquisition platforms have led to the era of Big Data. The rapid growth of artificial intelligence (AI), computing power and machine learning (ML) algorithms allow Big Data to be processed within affordable time constraints. This opens abundant opportunities to develop novel and efficient approaches to enhance the sustainability and resilience of Smart Cities. This work, by starting with a review of the state-of-the-art data fusion and ML techniques, focuses on the development of advanced solutions to structural health monitoring (SHM) and metamaterial design and discovery strategies. A deep convolutional neural network (CNN) based approach that is more robust against noisy data is proposed to perform structural response estimation and system identification. To efficiently detect surface defects using mobile devices with limited training data, an approach that incorporates network pruning into transfer learning is introduced for crack and corrosion detection. For metamaterial design, a reinforcement learning (RL) and a neural network based approach are proposed to reduce the computation efforts for the design of periodic and non-periodic metamaterials, respectively. Lastly, a physics-constrained deep auto-encoder (DAE) based approach is proposed to design the geometry of wave scatterers that satisfy user-defined downstream acoustic 2D wave fields. The robustness of the proposed approaches as well as their limitations are demonstrated and discussed through experimental data or/and numerical simulations. A roadmap for future works that may benefit the SHM and material design research communities is presented at the end of this dissertation.</p><br>
12

PROGRAM ANOMALY DETECTION FOR INTERNET OF THINGS

Akash Agarwal (13114362) 01 September 2022 (has links)
<p>Program anomaly detection — modeling normal program executions to detect deviations at runtime as cues for possible exploits — has become a popular approach for software security. To leverage high performance modeling and complete tracing, existing techniques however focus on subsets of applications, e.g., on system calls or calls to predefined libraries. Due to limited scope, it is insufficient to detect subtle control-oriented and data-oriented attacks that introduces new illegal call relationships at the application level. Also such techniques are hard to apply on devices that lack a clear separation between OS and the application layer. This dissertation advances the design and implementation of program anomaly detection techniques by providing application context for library and system calls making it powerful for detecting advanced attacks targeted at manipulating intra- and inter-procedural control-flow and decision variables. </p> <p><br></p> <p>This dissertation has two main parts. The first part describes a statically initialized generic calling context program anomaly detection technique LANCET based on Hidden Markov Modeling to provide security against control-oriented attacks at program runtime. It also establishes an efficient execution tracing mechanism facilitated through source code instrumentation of applications. The second part describes a program anomaly detection framework EDISON to provide security against data-oriented attacks using graph representation learning and language models for intra and inter-procedural behavioral modeling respectively.</p> <p><br> This dissertation makes three high-level contributions. First, the concise descriptions demonstrates the design, implementation and extensive evaluation of an aggregation-based anomaly detection technique using fine-grained generic calling context-sensitive modeling that allows for scaling the detection over entire applications. Second, the precise descriptions show the design, implementation, and extensive evaluation of a detection technique that maps runtime traces to the program’s control-flow graph and leverages graphical feature representation to learn dynamic program behavior. Finally, this dissertation provides details and experience for designing program anomaly detection frameworks from high-level concepts, design, to low-level implementation techniques.</p>

Page generated in 0.1088 seconds