• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1872
  • 57
  • 57
  • 38
  • 37
  • 37
  • 19
  • 14
  • 11
  • 7
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 2713
  • 2713
  • 1119
  • 974
  • 843
  • 619
  • 581
  • 496
  • 493
  • 468
  • 447
  • 443
  • 418
  • 413
  • 383
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Coherent Nonlinear Raman Microscopy and the Applications of Deep Learning & Pattern Recognition Methods to the Extraction of Quantitative Information

Abdolghader, Pedram 16 September 2021 (has links)
Coherent Raman microscopy (CRM) is a powerful nonlinear optical imaging technique based on contrast via Raman active molecular vibrations. CRM has been used in domains ranging from biology to medicine to geology in order to provide quick, sensitive, chemical-specific, and label-free 3D sectioning of samples. The Raman contrast is usually obtained by combining two ultrashort pulse input beams, known as Pump and Stokes, whose frequency difference is adjusted to the Raman vibrational frequency of interest. CRM can be used in conjunction with other imaging modalities such as second harmonic generation, fluorescence, and third harmonic generation microscopy, resulting in a multimodal imaging technique that can capture a massive amount of data. Two fundamental elements are crucial in CRM. First, a laser source which is broadband, stable, rapidly tunable, and low in noise. Second, a strategy for image analysis that can handle denoising and material classification issues in the relatively large datasets obtained by CRM techniques. Stimulated Raman Scattering (SRS) microscopy is a subset of CRM techniques, and this thesis is devoted entirely to it. Although Raman imaging based on a single vibrational resonance can be useful, non-resonant background signals and overlapping bands in SRS can impair contrast and chemical specificity. Tuning over the Raman spectrum is therefore crucial for target identification, which necessitates the use of a broadband and easily tunable laser source. Although supercontinuum generation in a nonlinear fibre could provide extended tunability, it is typically not viable for some CRM techniques, specifically in SRS microscopy. Signal acquisition schemes in SRS microscopy are focused primarily on detecting a tiny modulation transfer between the Pump and Stokes input laser beams. As a result, very low noise source is required. The primary and most important component in hyperspectral SRS microscopy is a low-noise broadband laser source. The second problem in SRS microscopy is poor signal-to-noise (SNR) ratios in some situations, which can be caused by low target-molecule concentrations in the sample and/or scattering losses in deep-tissue imaging, as examples. Furthermore, in some SRS imaging applications (e.g., in vivo), fast imaging, low input laser power or short integration time is required to prevent sample photodamage, typically resulting in low contrast (low SNR) images. Low SNR images also typically suffer from poorly resolved spectral features. Various de-noising techniques have been used to date in image improvement. However, to enable averaging, these often require either previous knowledge of the noise source or numerous images of the same field of view (under better observing conditions), which may result in the image having lower spatial-spectral resolution. Sample segmentation or converting a 2D hyperspectral image to a chemical concentration map, is also a critical issue in SRS microscopy. Raman vibrational bands in heterogeneous samples are likely to overlap, necessitating the use of chemometrics to separate and segment them. We will address the aforementioned issues in SRS microscopy in this thesis. To begin, we demonstrate that a supercontinuum light source based on all normal dispersion (ANDi) fibres generates a stable broadband output with very low incremental source noise. The ANDi fibre output's noise power spectral density was evaluated, and its applicability in hyperspectral SRS microscopy applications was shown. This demonstrates the potential of ANDi fibre sources for broadband SRS imaging as well as their ease of implementation. Second, we demonstrate a deep learning neural net model and unsupervised machine-learning algorithm for rapid and automated de-noising and segmentation of SRS images based on a ten-layer convolutional autoencoder: UHRED (Unsupervised Hyperspectral Resolution Enhancement and De-noising). UHRED is trained in an unsupervised manner using only a single (“one-shot”) hyperspectral image, with no requirements for training on high quality (ground truth) labelled data sets or images.
112

Semantic Segmentation For Free Drive-able Space Estimation

Gallagher, Eric 02 October 2020 (has links)
Autonomous Vehicles need precise information as to the Drive-able space in order to be able to safely navigate. In recent years deep learning and Semantic Segmentation have attracted intense research. It is a highly advancing and rapidly evolving field that continues to provide excellent results. Research has shown that deep learning is emerging as a powerful tool in many applications. The aim of this study is to develop a deep learning system to estimate the Free Drive-able space. Building on the state of the art deep learning techniques, semantic segmentation will be used to replace the need for highly accurate maps, that are expensive to license. Free Drive-able space is defined as the drive-able space on the correct side of the road, that can be reached without a collision with another road user or pedestrian. A state of the art deep network will be trained with a custom data-set in order to learn complex driving decisions. Motivated by good results, further deep learning techniques will be applied to measure distance from monocular images. The findings demonstrate the power of deep learning techniques in complex driving decisions. The results also indicate the economic and technical feasibility of semantic segmentation over expensive high definition maps.
113

FROM SEEING BETTER TO UNDERSTANDING BETTER: DEEP LEARNING FOR MODERN COMPUTER VISION APPLICATIONS

Tianqi Guo (12890459) 17 June 2022 (has links)
<p>In this dissertation, we document a few of our recent attempts in bridging the gap between the fast evolving deep learning research and the vast industry needs for dealing with computer vision challenges. More specifically, we developed novel deep-learning-based techniques for the following application-driven computer vision challenges: image super-resolution with quality restoration, motion estimation by optical flow, object detection for shape reconstruction, and object segmentation for motion tracking. Those four topics cover the computer vision hierarchy from the low level where digital images are processed to restore missing information for better human perception, to middle level where certain objects of interest are recognized and their motions are analyzed, finally to high level where the scene captured in the video footage will be interpreted for further analysis. In the process of building the whole-package of  ready-to-deploy solutions, we center our efforts on designing and training the most suitable convolutional neural networks for the particular computer vision problem at hand. Complementary procedures for data collection, data annotation,  post-processing of network outputs tailored for specific application needs, and deployment details will also be discussed where necessary. We hope our work demonstrates the applicability and versatility of convolutional neural networks for real-world computer vision tasks on a broad spectrum, from seeing better to understanding better.</p>
114

A SYSTEMATIC STUDY OF SPARSE DEEP LEARNING WITH DIFFERENT PENALTIES

Xinlin Tao (13143465) 25 April 2023 (has links)
<p>Deep learning has been the driving force behind many successful data science achievements. However, the deep neural network (DNN) that forms the basis of deep learning is</p> <p>often over-parameterized, leading to training, prediction, and interpretation challenges. To</p> <p>address this issue, it is common practice to apply an appropriate penalty to each connection</p> <p>weight, limiting its magnitude. This approach is equivalent to imposing a prior distribution</p> <p>on each connection weight from a Bayesian perspective. This project offers a systematic investigation into the selection of the penalty function or prior distribution. Specifically, under</p> <p>the general theoretical framework of posterior consistency, we prove that consistent sparse</p> <p>deep learning can be achieved with a variety of penalty functions or prior distributions.</p> <p>Examples include amenable regularization penalties (such as MCP and SCAD), spike-and?slab priors (such as mixture Gaussian distribution and mixture Laplace distribution), and</p> <p>polynomial decayed priors (such as the student-t distribution). Our theory is supported by</p> <p>numerical results.</p> <p><br></p>
115

TOWARD ROBUST AND INTERPRETABLE GRAPH AND IMAGE REPRESENTATION LEARNING

Juan Shu (14816524) 27 April 2023 (has links)
<p>Although deep learning models continue to gain momentum, their robustness and interpretability have always been a big concern because of the complexity of such models. In this dissertation, we studied several topics on the robustness and interpretability of convolutional neural networks (CNNs) and graph neural networks (GNNs). We first identified the structural problem of deep convolutional neural networks that leads to the adversarial examples and defined DNN uncertainty regions. We also argued that the generalization error, the large sample theoretical guarantee established for DNN, cannot adequately capture the phenomenon of adversarial examples. Secondly, we studied the dropout in GNNs, which is an effective regularization approach to prevent overfitting. Contrary to CNN, GNN usually has a shallow structure because a deep GNN normally sees performance degradation. We studied different dropout schemes and established a connection between dropout and over-smoothing in GNNs. Therefore we developed layer-wise compensation dropout, which allows GNN to go deeper without suffering performance degradation. We also developed a heteroscedastic dropout which effectively deals with a large number of missing node features due to heavy experimental noise or privacy issues. Lastly, we studied the interpretability of graph neural networks. We developed a self-interpretable GNN structure that denoises useless edges or features, leading to a more efficient message-passing process. The GNN prediction and explanation accuracy were boosted compared with baseline models. </p>
116

Analysis and Comparison of Distributed Training Techniques for Deep Neural Networks in a Dynamic Environment / Analys och jämförelse av distribuerade tränings tekniker för djupa neurala nätverk i en dynamisk miljö

Gebremeskel, Ermias January 2018 (has links)
Deep learning models' prediction accuracy tends to improve with the size of the model. The implications being that the amount of computational power needed to train models is continuously increasing. Distributed deep learning training tries to address this issue by spreading the computational load onto several devices. In theory, distributing computation onto N devices should give a performance improvement of xN. Yet, in reality the performance improvement is rarely xN, due to communication and other overheads. This thesis will study the communication overhead incurred when distributing deep learning training. Hopsworks is a platform designed for data science. The purpose of this work is to explore a feasible way of deploying distributed deep learning training on a shared cluster and analyzing the performance of different distributed deep learning algorithms to be used on this platform. The findings of this study show that bandwidth-optimal communication algorithms like ring all-reduce scales better than many-to-one communication algorithms like parameter server, but were less fault tolerant. Furthermore, system usage statistics collected revealed a network bottleneck when training is distributed on multiple machines. This work also shows that it is possible to run MPI on a hadoop cluster by building a prototype that orchestrates resource allocation, deployment, and monitoring of MPI based training jobs. Even though the experiments did not cover different cluster configurations, the results are still relevant in showing what considerations need to be made when distributing deep learning training. / Träffsäkerheten hos djupinlärningsmodeller tenderar att förbättras i relation med storleken på modellen. Implikationen blir att mängden beräkningskraft som krävs för att träna modeller ökar kontinuerligt.Distribuerad djupinlärning försöker lösa detta problem genom att distribuera beräkningsbelastning på flera enheter. Att distribuera beräkningarna på N enheter skulle i teorin innebär en linjär skalbarhet (xN). I verkligenheten stämmer sällan detta på grund av overhead från nätverkskommunikation eller I/O. Hopsworks är en dataanalys och maskininlärningsplattform. Syftetmed detta arbeta är att utforska ett möjligt sätt att utföra distribueraddjupinlärningträning på ett delat datorkluster, samt analysera prestandan hos olika algoritmer för distribuerad djupinlärning att använda i plattformen. Resultaten i denna studie visar att nätverksoptimala algoritmer såsom ring all-reduce skalar bättre för distribuerad djupinlärning änmånga-till-en kommunikationsalgoritmer såsom parameter server, men är inte lika feltoleranta. Insamlad data från experimenten visade på en flaskhals i nätverket vid träning på flera maskiner. Detta arbete visar även att det är möjligt att exekvera MPI program på ett hadoopkluster genom att bygga en prototyp som orkestrerar resursallokering, distribution och övervakning av exekvering. Trots att experimenten inte täcker olika klusterkonfigurationer så visar resultaten på vilka faktorer som bör tas hänsyn till vid distribuerad träning av djupinlärningsmodeller.
117

Efficient Decentralized Learning Methods for Deep Neural Networks

Sai Aparna Aketi (18258529) 26 March 2024 (has links)
<p dir="ltr">Decentralized learning is the key to training deep neural networks (DNNs) over large distributed datasets generated at different devices and locations, without the need for a central server. They enable next-generation applications that require DNNs to interact and learn from their environment continuously. The practical implementation of decentralized algorithms brings about its unique set of challenges. In particular, these algorithms should be (a) compatible with time-varying graph structures, (b) compute and communication efficient, and (c) resilient to heterogeneous data distributions. The objective of this thesis is to enable efficient decentralized learning in deep neural networks addressing the abovementioned challenges. Towards this, firstly a communication-efficient decentralized algorithm (Sparse-Push) that supports directed and time-varying graphs with error-compensated communication compression is proposed. Second, a low-precision decentralized training that aims to reduce memory requirements and computational complexity is proposed. Here, we design ”Range-EvoNorm” as the normalization activation layer which is better suited for low-precision decentralized training. Finally, addressing the problem of data heterogeneity, three impactful advancements namely Neighborhood Gradient Mean (NGM), Global Update Tracking (GUT), and Cross-feature Contrastive Loss (CCL) are proposed. NGM utilizes extra communication rounds to obtain cross-agent gradient information whereas GUT tracks global update information with no communication overhead, improving the performance on heterogeneous data. CCL explores an orthogonal direction of using a data-free knowledge distillation approach to handle heterogeneous data in decentralized setups. All the algorithms are evaluated on computer vision tasks using standard image-classification datasets. We conclude this dissertation by presenting a summary of the proposed decentralized methods and their trade-offs for heterogeneous data distributions. Overall, the methods proposed in this thesis address the critical limitations of training deep neural networks in a decentralized setup and advance the state-of-the-art in this domain.</p>
118

<strong>A LARGE-SCALE UAV AUDIO DATASET AND AUDIO-BASED UAV CLASSIFICATION USING CNN</strong>

Yaqin Wang (8797037) 17 July 2023 (has links)
<p>The growing popularity and increased accessibility of unmanned aerial vehicles (UAVs) have raised concerns about potential threats they may pose. In response, researchers have devoted significant efforts to developing UAV detection and classification systems, utilizing diverse methodologies such as computer vision, radar, radio frequency, and audio-based approaches. However, the availability of publicly accessible UAV audio datasets remains limited. Consequently, this research endeavor was undertaken to address this gap by undertaking the collection of a comprehensive UAV audio dataset, alongside the development of a precise and efficient audio-based UAV classification system.</p> <p>This research project is structured into three distinct phases, each serving a unique purpose in data collection and training the proposed UAV classifier. These phases encompass data collection, dataset evaluation, the implementation of a proposed convolutional neural network, training procedures, as well as an in-depth analysis and evaluation of the obtained results. To assess the effectiveness of the model, several evaluation metrics are employed, including training accuracy, loss rate, the confusion matrix, and ROC curves.</p> <p>The findings from this study conclusively demonstrate that the proposed CNN classi- fier exhibits nearly flawless performance in accurately classifying UAVs across 22 distinct categories.</p>
119

HIGHLY ACCURATE MACROMOLECULAR STRUCTURE COMPLEX DETECTION, DETERMINATION AND EVALUATION BY DEEP LEARNING

Xiao Wang (17405185) 17 November 2023 (has links)
<p dir="ltr">In life sciences, the determination of macromolecular structures and their functions, particularly proteins and protein complexes, is of paramount importance, as these molecules play critical roles within cells. The specific physical interactions of macromolecules govern molecular and cellular functions, making the 3D structure elucidation of these entities essential for comprehending the mechanisms underlying life processes, diseases, and drug discovery. Cryo-electron microscopy (cryo-EM) has emerged as a promising experimental technique for obtaining 3D macromolecular structures. In the course of my research, I proposed CryoREAD, an innovative AI-based method for <i>de nov</i>o DNA/RNA structure modeling. This novel approach represents the first fully automated solution for DNA/RNA structure modeling from cryo-EM maps at near-atomic resolution. However, as the resolution decreases, structure modeling becomes significantly more challenging. To address this challenge, I introduced Emap2sec+, a 3D deep convolutional neural network designed to identify protein secondary structures, RNA, and DNA information from cryo-EM maps at intermediate resolutions ranging from 5-10 Å. Additionally, I presented Alpha-EM-Multimer, a groundbreaking method for automatically building full protein complexes from cryo-EM maps at intermediate resolution. Alpha-EM-Multimer employs a diffusion model to trace the protein backbone and subsequently fits the AlphaFold predicted single-chain structure to construct the complete protein complex. Notably, this method stands as the first to enable the modeling of protein complexes with more than 10,000 residues for cryo-EM maps at intermediate resolution, achieving an average TM-Score of predicted protein complexes above 0.8, which closely approximates the native structure. Furthermore, I addressed the recognition of local structural errors in predicted and experimental protein structures by proposing DAQ, an evaluation approach for experimental protein structure quality that utilizes detection probabilities derived from cryo-EM maps via a pretrained multi-task neural network. In the pursuit of evaluating protein complexes generated through computational methods, I developed GNN-DOVE and DOVE, leveraging convolutional neural networks and graph neural networks to assess the accuracy of predicted protein complex structures. These advancements in cryo-EM-based structural modeling and evaluation methodologies hold significant promise for advancing our understanding of complex macromolecular systems and their biological implications.</p>
120

Asymmetry Learning for Out-of-distribution Tasks

Chandra Mouli Sekar (18437814) 02 May 2024 (has links)
<p dir="ltr">Despite their astonishing capacity to fit data, neural networks have difficulties extrapolating beyond training data distribution. When the out-of-distribution prediction task is formalized as a counterfactual query on a causal model, the reason for their extrapolation failure is clear: neural networks learn spurious correlations in the training data rather than features that are causally related to the target label. This thesis proposes to perform a causal search over a known family of causal models to learn robust (maximally invariant) predictors for single- and multiple-environment extrapolation tasks.</p><p dir="ltr">First, I formalize the out-of-distribution task as a counterfactual query over a structural causal model. For single-environment extrapolation, I argue that symmetries of the input data are valuable for training neural networks that can extrapolate. I introduce Asymmetry learning, a new learning paradigm that is guided by the hypothesis that all (known) symmetries are mandatory even without evidence in training, unless the learner deems it inconsistent with the training data. Asymmetry learning performs a causal model search to find the simplest causal model defining a causal connection between the target labels and the symmetry transformations that affect the label. My experiments on a variety of out-of-distribution tasks on images and sequences show that proposed methods extrapolate much better than the standard neural networks.</p><p dir="ltr">Then, I consider multiple-environment out-of-distribution tasks in dynamical system forecasting that arise due to shifts in initial conditions or parameters of the dynamical system. I identify key OOD challenges in the existing deep learning and physics-informed machine learning (PIML) methods for these tasks. To mitigate these drawbacks, I combine meta-learning and causal structure discovery over a family of given structural causal models to learn the underlying dynamical system. In three simulated forecasting tasks, I show that the proposed approach is 2x to 28x more robust than the baselines.</p>

Page generated in 0.1064 seconds