• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A marine deep seismic sounding survey in the region of Explorer Ridge

Malecek, Steven Jerome January 1976 (has links)
During July 1974, two reversed deep seismic sounding (DSS) profiles extending about 75 km were recorded in the Explorer Ridge region of the northeastern Pacific, one parallel and the other perpendicular to the ridge. A two-ship operation was used to record near-vertical incidence to wide-angle reflected waves and refracted waves with penetration from the ocean bottom to the upper mantle. Signals from six individual hydrophones suspended at 45 m depth from a 600 m cable trailed behind the receiving ship were recorded in digital form. The shooting ship detonated charges ranging from 2.3 kg to 280 kg and recorded the direct arrival plus the WWVB time code. Processing of the data recorded at distances beyond 4 km included demultiplexing, stacking, and filtering. Before the data were presented in record section form, traveltime corrections were made for topography and shot distance, and amplitude corrections were made for amplifier gain, charge size, and spherical spreading. The interpretation procedure consisted of two steps. A homogeneous, layered velocity-depth model was initially constructed from first arrival traveltime data. The p-A curve corresponding to this model was then altered until an amplitude fit was obtained using synthetic seismograms. Weichert-Herglotz integration of the resultant p-A curve produced the final velocity-depth model. This traveltime and amplitude interpretation required the introduction of velocity gradients into the model. The profile run across the ridge showed no anomalous behaviour as the ridge was crossed; the profile on the Juan de Fuca plate, paralleling the ridge, exhibited traveltime branch offsets and delays. These have been interpreted as due to faulting with a. vertical component of offset of about 5 km. The reversed upper mantle velocities are 7.8 and 7.3 km/s in directions perpendicular and parallel to the ridge. Anisotropy is proposed to explain these different velocities. Compared with crustal sections from other ridge areas, the data require a thick "layer 3" (up to 7 km) near the ridge crest. The total depth to the base of the oceanic crust varies between 10 and 12 km except in the faulted region. The results of this study favor the hypothesis that Explorer Ridge is presently an inactive spreading center. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
2

Computer graphic representation of remote environments using position tactile sensors

Fyler, Donald Charles January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING / Includes bibliographical references. / by Donald Charles Fyler. / M.S.
3

The adjoint method of optimal control for the acoustic monitoring of a shallow water environment / Méthode adjointe de contrôle optimal pour la caractérisation acoustique d'un environnement petits fonds.

Meyer, Matthias 19 December 2007 (has links)
Originally developed in the 1970s for the optimal control of systems governed by partial differential equations, the adjoint method has found several successful applications, e.g. in meteorology with large-scale 3D or 4D atmospheric data assimilation schemes, for carbon cycle data assimilation in biogeochemistry and climate research, or in oceanographic modelling with efficient adjoint codes of ocean general circulation models.<p><p>Despite the variety of applications in these research fields, adjoint methods have only very recently drawn attention from the ocean acoustics community. In ocean acoustic tomography and geoacoustic inversion, where the inverse problem is to recover unknown acoustic properties of the water column and the seabed from acoustic transmission data, the solution approaches are typically based on travel time inversion or standard matched-field processing in combination with metaheuristics for global optimization. <p><p>In order to complement the adjoint schemes already in use in meteorology and oceanography with an ocean acoustic component, this thesis is concerned with the development of the adjoint of a full-field acoustic propagation model for shallow water environments. <p><p>In view of the increasing importance of global ocean observing systems such as the European Seas Observatory Network, the Arctic Ocean Observing System and Maritime Rapid Environmental Assessment (MREA) systems for defence and security applications, the adjoint of an ocean acoustic propagation model can become an integral part of a coupled oceanographic and acoustic data assimilation scheme in the future. <p><p>Given the acoustic pressure field measured on a vertical hydrophone array and a modelled replica field that is calculated for a specific parametrization of the environment, the developed adjoint model backpropagates the mismatch (residual) between the measured and predicted field from the receiver array towards the source.<p><p>The backpropagated error field is then converted into an estimate of the exact gradient of the objective function with respect to any of the relevant physical parameters of the environment including the sound speed structure in the water column and densities, compressional/shear sound speeds, and attenuations of the sediment layers and the sub-bottom halfspace. The resulting environmental gradients can be used in combination with gradient descent methods such as conjugate gradient, or Newton-type optimization methods tolocate the error surface minimum via a series of iterations. This is particularly attractive for monitoring slowly varying environments, where the gradient information can be used to track the environmental parameters continuously over time and space.<p><p>In shallow water environments, where an accurate treatment of the acoustic interaction with the bottom is of outmost importance for a correct prediction of the sound field, and field data are often recorded on non-fully populated arrays, there is an inherent need for observation over a broad range of frequencies. For this purpose, the adjoint-based approach is generalized for a joint optimization across multiple frequencies and special attention is devoted to regularization methods that incorporate additional information about the desired solution in order to stabilize the optimization process.<p><p>Starting with an analytical formulation of the multiple-frequency adjoint approach for parabolic-type approximations, the adjoint method is progressively tailored in the course of the thesis towards a realistic wide-angle parabolic equation propagation model and the treatment of fully nonlocal impedance boundary conditions. A semi-automatic adjoint generation via modular graph approach enables the direct inversion of both the geoacoustic parameters embedded in the discrete nonlocal boundary condition and the acoustic properties of the water column. Several case studies based on environmental data obtained in Mediterranean shallow waters are used in the thesis to assess the capabilities of adjoint-based acoustic inversion for different experimental configurations, particularly taking into account sparse array geometries and partial depth coverage of the water column. The numerical implementation of the approach is found to be robust, provided that the initial guesses are not too far from the desired solution, and accurate, and converges in a small number of iterations. During the multi-frequency optimization process, the evolution of the control parameters displays a parameter hierarchy which clearly relates to the relative sensitivity of the acoustic pressure field to the physical parameters. <p><p>The actual validation of the adjoint-generated environmental gradients for acoustic monitoring of a shallow water environment is based on acoustic and oceanographic data from the Yellow Shark '94 and the MREA '07 sea trials, conducted in the Tyrrhenian Sea, south of the island of Elba.<p> <p>Starting from an initial guess of the environmental control parameters, either obtained through acoustic inversion with global search or supported by archival in-situ data, the adjoint method provides an efficient means to adjust local changes with a couple of iterations and monitor the environmental properties over a series of inversions. <p><p>In this thesis the adjoint-based approach is used, e.g. to fine-tune up to eight bottom geoacoustic parameters of a shallow-water environment and to track the time-varying sound speed profile in the water column. <p><p>In the same way the approach can be extended to track the spatial water column and bottom structure using a mobile network of sparse arrays.<p><p>Work is currently being focused on the inclusion of the adjoint approach into hybrid optimization schemes or ensemble predictions, as an essential building block in a combined ocean acoustic data assimilation framework and the subsequent validation of the acoustic monitoring capabilities with long-term experimental data in shallow water environments. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0785 seconds