Spelling suggestions: "subject:"deepwater"" "subject:"deepwaters""
51 |
Impacts of the Anomalous Mississippi River Discharge and Diversions on Phytoplankton Blooming in Northeastern Gulf of MexicoO'connor, Brendan 01 January 2013 (has links)
On April 20, 2010 a tragic explosion aboard the Deepwater Horizon (DWH) drilling rig marked the beginning of one of the worst environmental disasters in history. For 87 days oil and gas were released into the Gulf of Mexico. In August 2010, anomalous phytoplankton activity was identified in the Northeastern Gulf of Mexico, using the Fluorescence Line Height (FLH) ocean color product. The FLH anomaly was bound by approximately 30-28 degrees North and 90 and 86 degrees West and there was a suggestion that this anomaly may have occurred due to the presence of oil. This study was designed to examine alternative explanations and to determine what influence the Mississippi River and the freshwater diversions, employed in the response efforts, may have had on the development of the FLH anomaly.
The combination of the anomalously high flow rate in the Mississippi River observed in June-August 2010, the use of freshwater diversions, and three severe storms increased the flow of water through the adjoining marshes. We propose that these conditions reduced the residence time of water and nutrients on the wetlands, and likely mobilized nutrients leading to increased fresh water and nutrients being discharge to the coasts around the Mississippi Delta. Salinity contour maps created from data collected by ships operating in the Northeastern Gulf of Mexico showed that the 31 isohaline was upwards of 250km east of the Mississippi River Birds Foot Delta in August 2010.
The American Seas (AmSeas) numerical circulation model was used to examine the dispersal and distribution of water parcels from the Mississippi River and freshwater diversions. Two virtual particle seeding locations were used to trace particles to obtain a measure of the percentage of particles entering a Region of Interest (ROI) located in the center of the FLH anomaly, i.e. 150 km east of the Mississippi Delta. All environmental data examined suggest that the eastward dispersal of the Mississippi River water including that derived from freshwater diversions and storm activity contributed to the development of FLH anomaly in August 2010.
Chapter two examines the spectral characteristics of water and oil collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Several peaks in the spectral features of the total radiance of surface oil between 1907nm and 2400nm appear to be absent for water. An algorithm (Spectral Line Height) was created to measure the height of the peak at 2142nm relative to a baseline between 2013nm and 2390nm. A normalized difference technique developed by the USGS was used as a validation tool. Preliminary results of the SLH technique appear to compare favorably with the results derived using the USGS technique. The SLH technique worked in areas that did not show sunglint or shallow bottom features. Sunglint areas would require additional correction to remove the effect of specular reflection. The SLH technique shows promise but will require validation to develop into an operational remote sensing method.
|
52 |
Variations of Sedimentary Biogenic silica in the Gulf of Mexico during the Deepwater Horizon and IXTOC-I Oil Spill.Lee, Jong Jin 26 March 2019 (has links)
The goal of this research is to understand the impacts of the 2010 Deepwater Horizon oil spill and the 1970-1980 IXTOC-I oil spill and other anthropogenic activity (e.g. dam construction) on surface water primary productivity by measuring sedimentary biogenic silica. It is known that sedimentary biogenic silica is distinct from mineral – bound silica, therefore it has been used as a proxy record for surface water primary productivity (e.g. diatom blooms). The Deepwater Horizon oil spill resulted in a widespread Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA) event. The IXTOC-I oil spill was one of the largest oil spills in history and it is likely that the MOSSFA event occurred as a direct result. MOSSFA is characterized by increased deposition of surface derived components and dramatic changes in post-depositional chemical (redox) and biological (benthic meio- and macro-fauna) conditions. Sedimentary biogenic silica provides an independent record of the surface derived portion of MOSSFA inputs. Occurrences of MOSSFA after IXTOC-I and Deepwater Horizon were compared by collecting sediment cores from the northern Gulf of Mexico (Deepwater Horizon) and the southern Gulf of Mexico (IXTOC-I). An age model for each core was developed using short-lived radioisotopes (i.e. 210Pbxs). Sedimentary biogenic silica was significantly elevated in sedimentary intervals affected by the Deepwater Horizon spill. This suggests that a significant portion of the surface biological materials entrained during the MOSSFA event were sourced by diatom production. However, only one core (of three from the oil spill influenced area utilized in this study) from shallower depth had elevated levels of sedimentary biogenic silica in the sedimentary interval associated with IXTOC-I. Also, the down-core profiles of sedimentary
biogenic silica from the other cores collected in the southern Gulf of Mexico are consistent with the history of dam construction (1949 to 1989) on the Grijalva and Papaloapan river systems. These two river systems are the dominant freshwater and nutrient sources for primary production in the Bay of Campeche region in the southern Gulf of Mexico and therefore the dominant control on diatom productivity and sedimentary biogenic silica distribution. Consequently, distribution of annual fresh water outflow and nutrient supply has transitioned from seasonal (before 1940’s) to stable (after 1980’s). Overall, sedimentary biogenic silica provides an independent record of surface derived MOSSFA inputs and serves as a proxy for other anthropogenic influences related to surface primary productivity variability.
|
53 |
A Temporal Analysis of a Deep-Pelagic Crustacean Assemblage (Decapoda: Caridea: Oplophoridae and Pandalidae) in the Gulf of Mexico After the Deepwater Horizon Oil SpillNichols, Devan 11 May 2018 (has links)
In 2010, the largest oil spill in U.S history occurred off the coast of Louisiana from April 20th to September 19th, when the well was declared officially sealed by the U.S Coast Guard, after releasing more than 4.4 million barrels of crude oil into the Gulf of Mexico (GOM) (McNutt et al., 2012). This spill was unique because it occurred in deep water approximately 1500 m below the ocean surface. Virtually nothing is known about the effects of oil spills on marine life in the deep sea, and there are limited data on mesopelagic and bathypelagic animals in the GOM before the Deepwater Horizon oil spill (DWHOS). The study presented here focuses on one of the most abundant and diverse groups of pelagic decapod crustaceans in the GOM – the family Oplophoridae and also includes one species from the family Pandalidae. Past studies on pelagic decapod crustaceans have been limited on both spatial and temporal scales. This study is unique because 1) it covers a large temporal range with data collected in 2011 and from 2015-2017, allowing for a more in-depth look at crustacean assemblage patterns, 2) it allows analysis of seasonality in reproduction, about which little is known for any deep-sea species, and 3) it assesses the potential effects of the Loop Current on species distribution and abundances, about which little is known. This information is important in understanding how the DWHOS may have affected the GOM ecosystem because pelagic decapod crustacean are intermediate components of the food web, and are in turn preyed upon by higher trophic levels. Unfortunately, there were little data on the mesopelagic ecosystem from this region before the spill, with the exception of a site in the eastern GOM (Standard Station, Hopkins et al., 1989; Hopkins et al., 1994). Therefore, these data, which incorporate samples taken one, five, six and seven years after the DWHOS, were analyzed with respect to year and season to determine if any trends were present. Results indicate that both biomass and abundance were significantly higher in 2011, than in subsequent years, indicating that the ecosystem has been declining since 2011. These two parameters were also lower in Loop Current water when compared to Common Water at all depths up to 1200 m, indicating that the Loop Current does have effects on deeper waters. The information obtained from this thesis will also act as a reference state for future studies in the GOM to monitor changes, or lack thereof, in the assemblage of deep-sea oplophorid and pandalid crustaceans.
|
54 |
The Vertical and Horizontal Distribution of Deep-Sea Crustaceans of the Order Euphausiacea (Malacostraca: Eucarida) from the northern Gulf of Mexico with notes on reproductive seasonality.Fine, Charles Douglas 05 December 2016 (has links)
The vertical and horizontal distributions of Euphausiacea in the northern Gulf of Mexico, including the location of the Deepwater Horizon oil spill, were analyzed from 340 trawl samples collected between April-June, 2011. This study is the first comprehensive survey of euphausiid distributions from depths deeper than 1000 m in the Gulf of Mexico and included stratified sampling from five discrete depth ranges (0-200 m, 200-600 m, 600-1000 m, 1000-1200 m, and 1200-1500 m). In addition, this study encompasses the region heavily impacted by the Deepwater Horizon oil spill. Data presented here could potentially be used in ecosystem models investigating trophic effects of the spill because euphausiids are the preferred prey of a variety of higher trophic organisms. Lastly, these data represent the first quantification of euphausiid assemblages in this location after the Deepwater Horizon event and can serve as a basis of comparison against which to monitor recovery of the euphausiid assemblage after exposure to Deepwater Horizon hydrocarbons and dispersant in the water column.
|
55 |
A study on well design and integrity for deepwater exploratory drilling in Brazilian Equatorial Margin. / Um estudo sobre o projeto e integridade de poços para perfuração exploratória em águas profundas na Margem Equatorial Brasileira.Salazar Ruiz, Manuel Sebastian 12 June 2018 (has links)
Drilling operations in deepwater (DW) or ultra-deepwater areas, even more in exploratory frontiers, have been increasingly challenging due to the operational complexities and limited available data about the subsurface conditions. In this sense, enhancing safety and minimizing the likelihood of losing well integrity and damage to the environment is a currently essential objective relating to offshore drilling activities. Hence, deepwater well designs should advance to safely meet the challenges related to the progression of well and water depths. The safe construction of these wells requires the application of suitable well design considerations that include well integrity approaches to reduce the risk of an unintended release of formation fluids (oil, gas or water) to the environment during the deepwater drilling operations, in other words a \"Blowout\" occurrence. In this study it is proposed two deepwater well architectural designs, limited to drilling stage, that safely accomplish the well targets and facing several deepwater well complexities, e.g. narrow operating envelopes. Thus, well logging and geological data of two actual pioneer wells drilled in deep and ultradeep water zones in Ceará Basin are used as a basis to construct and assess the drilling operating envelopes, to define the casing shoe depths and well barrier envelope. Furthermore, it is introduced the application of at least two independent Barrier Integrated Sets (BISs) to ensure the well integrity during the 4th phase drilling of the proposed well architectures, as it has recently been required in Brazil by the National Petroleum Agency (ANP) through \"Well Integrity Management System\" (SGIP for its acronym in Portuguese). / As operações de perfuração em áreas de águas profundas ou ultra profundas, ainda mais nas fronteiras exploratórias, têm sido cada vez mais desafiadoras devido às complexidades operacionais e aos limitados dados disponíveis sobre as condições do subsolo. Nesse sentido, aumentar a segurança e minimizar a probabilidade de perder a integridade do poço e os danos ao meio ambiente são objetivos essenciais atualmente relacionados às atividades de perfuração offshore. Portanto, os projetos de poços em águas profundas devem avançar para enfrentar com segurança os desafios associados à progressão do poço e das profundidades da água. A construção segura desses poços requer a aplicação de considerações de projeto adequadas que incluam abordagens da integridade do poço para reduzir o risco de liberação não intencional de fluidos de formação (óleo, gás ou água) para o ambiente durante as operações de perfuração em águas profundas, em outras palavras a ocorrência de \"Blowout\". Neste estudo, são propostos dois projetos arquiteturais de poços em águas profundas, limitados à etapa de perfuração, que cumprem com segurança os objetivos do poço e enfrentam várias complexidades de poços em águas profundas, por exemplo janelas operacionais estreitas. Assim, dados geológicos e de perfilagem de dois poços pioneiros perfurados nas zonas de águas profundas e ultra profundas da Bacia do Ceará são usados como base para a construção e avaliação da janela operacional, para definir as profundidades da sapata do revestimento e do conjunto das barreiras do poço. Além disso, é introduzida a aplicação de pelo menos dois Conjuntos Solidários de Barreiras (CSBs) independentes para garantir a integridade do poço durante a perfuração da 4ª fase das arquiteturas dos poços propostos, como tem sido recentemente exigido no Brasil pela Agência Nacional do Petróleo (ANP), através do \"Sistema de Gerenciamento de integridade de Poços\" (SGIP).
|
56 |
Development and Application of Aquatic Toxicology Studies for the Assessment of Impacts Due to Chemical Stressors Using Non-Standard Indigenous OrganismsSmith, Abraham Jeffrey 03 April 2018 (has links)
Research in the multidisciplinary science of ecotoxicology is crucial to assess injuries to ecosystem resources from chemical spills or other stressors used to support environmental decision-making. Established guidelines recommend the use of non-standard native species in toxicity investigations. This work focused on the use of native species for aquatic toxicity assessment to make more relevant conclusions on the potential for adverse biological effects to occur as a result to single chemical exposures or exposures to a complex mixture like oil. We apply these studies to investigate petroleum product impacts from the Deepwater Horizon incident and concerns for metal toxicity in estuarine environments using a new model organism. Data generated from comprehensive toxicity testing programs were used in the first probabilistic risk assessment of Deepwater Horizon oil toxicity highlighting a lack of appropriate data and representative phyla. Novel toxicity study methods and a stress-response index were developed and demonstrated sensitivity and success in using the starlet anemone in ecotoxicology studies. Swim performance was used as new method to investigate sublethal indicators of stress resulting in varied responses from sheepshead minnows and Florida pompano. These studies further our ability for better laboratory-to-field extrapolation and for decision-making. The use of native species and complex mixtures like oil presented novel challenges in conducting aquatic toxicity studies. Special emphasis is placed on the necessity to understand the appropriate laboratory conditions for native species not typically held in the laboratory and maintaining study parameters to obtain quality data for more accurate interpretation and replication.
|
57 |
Sequence stratigraphic characterisation of petroleum reservoirs in Block 11b/12b of the Southern Outeniqua BasinNformi, Emmanuel Nfor January 2011 (has links)
<p>The main purpose of this study was to identify and characterize the various sand prone depositional facies in the deepwater Southern Outeniqua Basin which generally tend to form during  / lowstand (marine regression) conditions producing progradational facies. It made use of sequence stratigraphy and turbidite facies models to predict the probable location of deepwater  / reservoirs in the undrilled Southern Outeniqua Basin using data from basin margin Pletmos Basin and the deepwater Southern Outeniqua Basin. Basin margin depositional packages were  / correlated in time and space with deepwater packages. It was an attempt at bridging the gap between process-related studies of sedimentary rocks and the more traditional economic geology  / f commercial deposits of petroleum using prevailing state-of-the-art in basin analysis. It enabled the most realistic reconstructions of genetic stratigraphy and offered the greatest  / application in exploration. Sequence stratigraphic analysis and interpretation of seismics, well logs, cores and biostratigraphic data was carried out providing a chronostratigraphic framework of the study area within which seismic facies analysis done. Nine (9) seismic lines that span the shallow/basin margin Pletmos basin into the undrilled deepwater Southern Outeniqua basin were analysed and interpreted and the relevant seismic geometries were captured. Four (4) turbidite depositional elements were identified from the seismic lines: channel, overbank deposits,  / haotic deposits and basin plain (basin floor fan) deposits. These were identified from the relevant seismic geometries (geometric attributes) observed on the 2D seismic lines. Thinning attributes, unconformity attributes and seismic facies attributes were observed from the seismic lines. This was preceded by basic structural analyses and interpretation of the  / seismic lines. according to the structural analysis and interpretation, deposition trended NW-SE and NNW-SSE as we go deepwater into the Southern Outeniqua basin. Well logs from six (6)  / of the interpreted wells indicated depositional channel fill as well as basin floor fans. This was identified in well Ga-V1 and Ga-S1 respectively. A bell and crescent shape gamma ray log  / signature was observed in well Ga-V1 indicating a fining up sequence as the channel was abandoned while an isolated massive mound-shape gamma ray log signature was observed in  / Ga-S1 indicating basin plain well-sorted sands. Core analyses and interpretation from two southern-most wells revealed three (3) facies which were derived based on Walker&lsquo / s 1978, turbidite  / facies. The observed facies were: sandstone, sand/shale and shale facies. Sequence stratigraphic characterisation of petroleum reservoirs in block 11b/12b of the Southern Outeniqua  / Basin. Cores of well Ga-V1 displayed fine-grained alternations of thin sandstone beds and shales belonging to the thin-bedded turbidite facies. This is typical of levees of the upper fan channel but  / could easily be confused with similar facies on the basin plain. According to Walker, 1978 such facies form under conditions of active fan progradation. Ga-S1 cores displayed not only classic  / turbidite facies where there was alternating sand and shale sections but showed thick uninterrupted sections of clean sands. This is typical of basin plain deposits. Only one well had  / biostratigraphic data though being very limited in content. This data revealed particular depth sections and stratigraphic sections as having medium to fast depositional rates. Such rates are  / characteristic of turbidite deposition from turbidity currents. This study as well as a complementary study by Carvajal et al., 2009 revealed that the Southern Outeniqua basin is a sand-prone  / basin with many progradational sequences in which tectonics and sediment supply rate have been significant factors (amongst others such as sea level change) in the formation of these  / deepwater sequences. In conclusion, the Southern Outeniqua basin was hereby seen as having a viable and unexplored petroleum system existing in this sand prone untested world class.</p>
|
58 |
Sequence stratigraphic characterisation of petroleum reservoirs in Block 11b/12b of the Southern Outeniqua BasinNformi, Emmanuel Nfor January 2011 (has links)
<p>The main purpose of this study was to identify and characterize the various sand prone depositional facies in the deepwater Southern Outeniqua Basin which generally tend to form during  / lowstand (marine regression) conditions producing progradational facies. It made use of sequence stratigraphy and turbidite facies models to predict the probable location of deepwater  / reservoirs in the undrilled Southern Outeniqua Basin using data from basin margin Pletmos Basin and the deepwater Southern Outeniqua Basin. Basin margin depositional packages were  / correlated in time and space with deepwater packages. It was an attempt at bridging the gap between process-related studies of sedimentary rocks and the more traditional economic geology  / f commercial deposits of petroleum using prevailing state-of-the-art in basin analysis. It enabled the most realistic reconstructions of genetic stratigraphy and offered the greatest  / application in exploration. Sequence stratigraphic analysis and interpretation of seismics, well logs, cores and biostratigraphic data was carried out providing a chronostratigraphic framework of the study area within which seismic facies analysis done. Nine (9) seismic lines that span the shallow/basin margin Pletmos basin into the undrilled deepwater Southern Outeniqua basin were analysed and interpreted and the relevant seismic geometries were captured. Four (4) turbidite depositional elements were identified from the seismic lines: channel, overbank deposits,  / haotic deposits and basin plain (basin floor fan) deposits. These were identified from the relevant seismic geometries (geometric attributes) observed on the 2D seismic lines. Thinning attributes, unconformity attributes and seismic facies attributes were observed from the seismic lines. This was preceded by basic structural analyses and interpretation of the  / seismic lines. according to the structural analysis and interpretation, deposition trended NW-SE and NNW-SSE as we go deepwater into the Southern Outeniqua basin. Well logs from six (6)  / of the interpreted wells indicated depositional channel fill as well as basin floor fans. This was identified in well Ga-V1 and Ga-S1 respectively. A bell and crescent shape gamma ray log  / signature was observed in well Ga-V1 indicating a fining up sequence as the channel was abandoned while an isolated massive mound-shape gamma ray log signature was observed in  / Ga-S1 indicating basin plain well-sorted sands. Core analyses and interpretation from two southern-most wells revealed three (3) facies which were derived based on Walker&lsquo / s 1978, turbidite  / facies. The observed facies were: sandstone, sand/shale and shale facies. Sequence stratigraphic characterisation of petroleum reservoirs in block 11b/12b of the Southern Outeniqua  / Basin. Cores of well Ga-V1 displayed fine-grained alternations of thin sandstone beds and shales belonging to the thin-bedded turbidite facies. This is typical of levees of the upper fan channel but  / could easily be confused with similar facies on the basin plain. According to Walker, 1978 such facies form under conditions of active fan progradation. Ga-S1 cores displayed not only classic  / turbidite facies where there was alternating sand and shale sections but showed thick uninterrupted sections of clean sands. This is typical of basin plain deposits. Only one well had  / biostratigraphic data though being very limited in content. This data revealed particular depth sections and stratigraphic sections as having medium to fast depositional rates. Such rates are  / characteristic of turbidite deposition from turbidity currents. This study as well as a complementary study by Carvajal et al., 2009 revealed that the Southern Outeniqua basin is a sand-prone  / basin with many progradational sequences in which tectonics and sediment supply rate have been significant factors (amongst others such as sea level change) in the formation of these  / deepwater sequences. In conclusion, the Southern Outeniqua basin was hereby seen as having a viable and unexplored petroleum system existing in this sand prone untested world class.</p>
|
59 |
Metabolic Activities and Diversity of Microbial Communities Associated with Anaerobic DegradationPerry, Verlin 17 December 2014 (has links)
Sulfate- and Fe(III)-reducing, and methanogenic prokaryotes (SRP, FRP, MGP) are key players in metabolic pathways involved in anaerobic biodegradation processes. Understanding the metabolic activity of these microbes in environments can enhance microbe-mediated processes such as oil spill bioremediation and methane biogas production. In this study, anaerobic microbial activities in Deepwater Horizon oil spill-impacted salt marsh sediments, and in methanogenic coal bed production water enrichment cultures amended with trace elements (TE), were elucidated by employing an approach combining methods in molecular biology and geochemistry. In situ metabolic activity of SRP, FRP and MGP were monitored seasonally and metabolically-active communities were identified in oil-impacted sediments using quantitative real time Reverse Transcription -PCR and clone library analysis of key functional genes: Dissimilatory (bi)sulfite reductase (dsrAB), Geobactereceae-specific citrate synthase (gltA), methyl coenzyme M reductase (mcrA), and benzyl succinate synthase (bssA). In situ application of montmorillonite clay was assessed for its potential at accelerating PHC degradation by stimulating microbial activities. Levels of dsrA, gltA and bssA transcripts suggested that PHC-oxidizing SRP are more active in summer while FRP are more active in winter, indicating their activities linked to the seasonal changes of redox potential and vegetation. BssA gene expression peaked in winter, and was highest at more highly oil-impacted sites. Expression of all genes was higher in clay-amended sites. bssA transcript level and Fe(II) production were highest in clay-amended microcosm. Total petroleum hydrocarbon (TPH) levels were lower in oil and clay-amended microcosm incubation than one with oil only amendment, suggesting enhanced TPH degradation by clay amendment. Pyrosequencing analysis 16S rRNA gene in clay-amended microcosms demonstrated the highest percentage abundance of groups closely related to known anaerobic aromatic degraders. Levels of mcrA transcripts correlated with methane production rates in TE-amended coal bed production water enrichments. The findings of the present study clearly support the advantage of gene expression analyses for estimating microbial activity. To the best of our knowledge, this is the first in situ study which employs key functional gene markers as molecular proxies for metabolic activity and diversity assessments in anaerobic oil-contaminated salt marsh sediment and also elucidates clay-enhanced in situ TPH degradation.
|
60 |
Impact du déversement pétrolier "Deepwater Horizon" sur le statut endocrinien d'un oiseau migrateur : cas du fou de bassan (Morus bassanus) de l'Île Bonaventure hivernant dans le Golfe du MexiqueFranci, Cynthia Daniela 07 1900 (has links) (PDF)
L'explosion de la plateforme de forage « Deepwater Horizon » dans le Golfe du Mexique en avril 2010 a provoqué le déversement d'un grand volume de pétrole brut dans les eaux de la région ce qui a conduit à des répercussions importantes sur la faune locale. Les impacts d'une telle catastrophe à long terme sur les oiseaux de mer ont peu été étudiés par la communauté scientifique. Pourtant, les effets délétères induits par l'action des hydrocarbures aromatiques polycycliques (HAPs) contenus dans le pétrole brut représentent la principale source d'inquiétude d'une exposition chronique sous-létale. L'île Bonaventure, situé dans le parc national de l'île-Bonaventure-et-du-Rocher-Percé, accueil l'une des plus grandes colonies de fous de bassan (Morus bassanus) au monde. Environ un quart de cette colonie migre dans le Golfe du Mexique une fois la saison de reproduction terminée, courant ainsi le risque d'être exposé au pétrole déversé soit directement (ingestion et absorption dermique) ou indirectement (consommation de proies contaminées). Une contamination au pétrole peut engendrer une détérioration de la condition physiologique des oiseaux exposés et altérer, entre autres, le fonctionnement du système endocrinien. Ainsi, il est justifié de craindre une portée sur la santé de ces oiseaux et donc, ultimement sur la dynamique de population de cette colonie (taux de survie, succès de reproduction, etc.). Cette étude avait pour but d'évaluer les effets potentiels de l'exposition aux HAPs, provenant du pétrole déversé dans le Golfe du Mexique, sur la santé de 34 fous de bassan de l'île Bonaventure lors de la période d'incubation à l'été 2011. Le premier objectif spécifique était de déterminer le lieu d'hivernage des fous de bassan à l'étude, soit le Golfe du Mexique ou la côte Atlantique, à l'aide de consignateurs d'intensité lumineuse afin de cibler les oiseaux potentiellement exposés au pétrole. Le second objectif consistait à déterminer le profil de contamination (HAPs) des oiseaux ainsi que de doser les concentrations hormonales (prolactine et corticostérone) circulant chez ces oiseaux. Finalement, il était question de mettre en relation le lieu d'hivernage, le profil de contamination et les concentrations hormonales des oiseaux en fonction du temps dans l'incubation (tôt ou tard). Il était attendu que les oiseaux ayant fréquenté le Golfe du Mexique aient des concentrations d'HAPs supérieures aux oiseaux de la côte Atlantique et que leurs concentrations en corticostérone et prolactine en soient affectés ce qui diminuerait leur succès de reproduction. Les concentrations sanguines en HAPs se sont révélées être sous les limites de détection de l'instrument analytique (HPLC). De plus, les concentrations hormonales ne semblaient pas différer selon le lieu de migration des oiseaux, ni le temps dans l'incubation. Leur succès de reproduction ne semblait pas affecté à l'été 2011. Toutefois, l'absence d'effets visibles au niveau de la reproduction de ces oiseaux n'implique pas nécessairement une absence d'impact physiologique. Finalement, cette étude a permis de démontrer l'utilité de la géolocation dans un contexte d'étude d'impact lors de déversement pétrolier, ce qui n'avait encore jamais été fait.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : prolactine, corticostérone, HAPs, Golfe du Mexique, Sulidae, oiseaux de mer
|
Page generated in 0.0748 seconds