• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 329
  • 78
  • 38
  • 28
  • 21
  • 19
  • 13
  • 12
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 671
  • 458
  • 206
  • 177
  • 134
  • 105
  • 101
  • 96
  • 74
  • 65
  • 64
  • 64
  • 60
  • 60
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

以SDN為基礎之具服務品質感知的智慧家庭頻寬管理架構 / SDN based QoS aware bandwidth management framework for smart homes

林建廷, Lin, Jian Ting Unknown Date (has links)
隨著智慧家庭技術及物聯網的裝置大幅度地成長,智慧家庭的網路流量亦隨之升高。當大量成長的智慧家庭流量造成網路壅塞時,可能使緊急服務的警告機制失效,或是造成某些應用服務品質低劣而不堪使用。這些問題恐阻礙智慧家庭未來的發展性。 為改善上述問題,本文提出創新的物聯網智慧家庭頻寬配置管理架構。以ISP業者管理數以千計的物聯網智慧家庭為情境,針對智慧家庭多樣化的應用服務,利用具前瞻性的軟體定義網路,提供ISP業者對智慧家庭外部網路頻寬做最佳化的配置。 本研究依改良後的3GPP LTE QoS Class Identifier (QCI),分類智慧家庭的服務,並考量服務的優先權及延遲程度,提出BASH演算法。透過本研究,ISP業者能依定義好的服務類別,將匯集後的智慧家庭服務流量藉由配置訊務流(traffic flow)的權重,計算出不同服務的最佳頻寬分配量,達到提升QoS及使用者QoE的目的。 為確認本論文所提出之方法的有效性,實驗設計是利用Linux伺服器架設OpenvSwitch、Ryu控制器及Mininet模擬器,建構SDN網路環境。實驗結果顯示,本研究所提出的BASH與ISP所用的傳統頻寬分配方法相比,能有效提高30%的throughput,降低159%的delay time及967%的 jitter time。 / With the increasing number of IoT (Internet of Things) devices and advance of smart home technology, the network traffic of smart home is also raising rapidly. When network congestion occurs due to massive traffic, some emergent alert mechanisms might become invalid or cause some application services performance degraded. All kinds of these will dramatically hamper the future development of smart homes. In order to resolve these problems, we propose an innovative bandwidth allocation smart home management framework for IoT enabled smart homes. The application scope of this research assumes a scenario that an ISP (Internet Service Provider) should support thousands of IoT enabled smart homes for a variety of services. The proposed bandwidth allocation framework is based on the promising software defined networking (SDN) architecture and is responsible for optimizing bandwidth allocation on external Internet traffic. We modify the 3GPP LTE QoS Class Identifier (QCI) to adaptive to the services suitable for smart homes. The proposed bandwidth allocation smart home (BASH) algorithm considers service priority and delay at the same time. With this framework, ISP is able to optimize bandwidth allocation by aggregating thousands of classified services of smart homes and thus effectively enhance Quality of Service (QoS) and user experience (QoE). In order to verify the proposed methods, we implement a SDN environment by using Linux Ubuntu servers with Mininet, Open vSwitch and Ryu controller. The experiment results show that BASH outperforms ISP traditional method in increasing the throughput by 30%, reducing delay and jitter by 159% and 967%, respectively.
502

Enhanced communication security and mobility management in small-cell networks

Namal, S. (Suneth) 09 December 2014 (has links)
Abstract Software-Defined Networks (SDN) focus on addressing the challenges of increased complexity and unified communication, for which the conventional networks are not optimally suited due to their static architecture. This dissertation discusses the methods about how to enhance communication security and mobility management in small-cell networks with IEEE 802.11 backhaul. Although 802.11 has become a mission-critical component of enterprise networks, in many cases it is not managed with the same rigor as the wired networks. 802.11 networks are thus in need of undergoing the same unified management as the wired networks. This dissertation also addresses several new issues from the perspective of mobility management in 802.11 backhaul. Due to lack of built-in quality of service support, IEEE 802.11 experiences serious challenges in meeting the demands of modern services and applications. 802.11 networks require significantly longer duration in association compared to what the real-time applications can tolerate. To optimise host mobility in IEEE 802.11, an extension to the initial authentication is provided by utilising Host Identity Protocol (HIP) based identity attributes and Elliptic Curve Cryptography (ECC) based session key generation. Finally, this dissertation puts forward the concept of SDN based cell mobility and network function virtualization, its counterpart. This is validated by introducing a unified SDN and cognitive radio architecture for harmonized end-to-end resource allocation and management presented at the end. / Tiivistelmä Ohjelmisto-ohjatut verkot (SDN) keskittyvät ratkaisemaan haasteita liittyen kasvaneeseen verkkojen monimutkaisuuteen ja yhtenäiseen kommunikaatioon, mihin perinteiset verkot eivät staattisen rakenteensa vuoksi sovellu. Väitöskirja käsittelee menetelmiä, joilla kommunikaation turvallisuutta ja liikkuvuuden hallintaa voidaan parantaa IEEE 802.11 langattomissa piensoluverkoissa. Vaikkakin 802.11 on muodostunut avainkomponentiksi yritysverkoissa, monissa tapauksissa sitä ei hallinnoida yhtä täsmällisesti kuin langallista verkkoa. 802.11 verkoissa on näin ollen tarve samantyyppiselle yhtenäiselle hallinnalle, kuin langallisissa verkoissa on. Väitöskirja keskittyy myös moniin uusiin liikkuvuuden hallintaan liittyviin ongelmiin 802.11 verkoissa. Johtuen sisäänrakennetun yhteyden laatumäärittelyn (QoS) puuttumisesta, IEEE 802.11 verkoille on haasteellista vastata modernien palvelujen ja sovellusten vaatimuksiin. 802.11 verkot vaativat huomattavasti pidemmän ajan verkkoon liittymisessä, kuin reaaliaikasovellukset vaativat. Työssä on esitelty laajennus alustavalle varmennukselle IEEE 802.11-standardiin isäntälaitteen liikkuvuuden optimoimiseksi, joka hyödyntää Host Identity Protocol (HIP)-pohjaisia identiteettiominaisuuksia sekä elliptisten käyrien salausmenetelmiin (ECC) perustuvaa istunnon avaimen luontia. Lopuksi työssä esitellään ohjelmisto-ohjattuihin verkkoihin pohjautuva solujen liikkuvuuden konsepti, sekä siihen olennaisesti liittyvä verkon virtualisointi. Tämä validoidaan esittelemällä yhtenäinen SDN:ään ja kognitiiviseen radioon perustuva arkkitehtuuri harmonisoidulle päästä päähän resurssien varaamiselle ja hallinnoinnille, joka esitellään lopussa.
503

Diffusive Acoustic Confocal Imaging System (DACI): a novel method for prostate cancer diagnosis

Yin, Wen 21 December 2017 (has links)
This thesis is part of the project undertaken to develop a diffusive acoustic confocal imaging system (DACI) that aims to differentiate between healthy and the diseased tissues in the prostate. Speed of sound is chosen as the tool to quantify the alterations in the tissues’ mechanical properties at different pathological states. The current work presents a scanning configuration that features three components: an acoustic emitter, a focusing mirror and a point receiver. The focusing mirror brings the collimated acoustic beam from the emitter into a focused probe position, which needs to be located within the bladder or at the near surface of the prostate. This position is introduced as the virtual source, where the acoustic intensity diffusively scatters into all directions and propagates through the specimen. The system design was simulated using ZEMAX and COMSOL to validate the concept of the virtual source. Lesions in a phantom prostate were found in the simulated amplitude and phase images. The speed of sound variation was estimated from the 1D unwrapped phase distribution indicating where the phase discontinuities existed. The measurements were conducted in a water aquarium using the tissue-mimicking prostate phantom. Two-dimensional projected images of the amplitude and the phase distributions of the investigating acoustic beam were measured. A USRP device was set up as the signal generation and acquisition device for the experiment. Two different signal extractions methods were developed to extract the amplitude and the phase information. The experimental results were found to generally agree with the simulation results. The proof-of-concept design was successful in measuring both the phase and the amplitude information of the acoustic signal passing through the prostate phantom. In future, the 2D/3D speed of sound variation needs to be estimated by an appropriate image reconstruction method. / Graduate / 2018-12-06
504

VN Embedding in SDN-based Metro Optical Network for Multimedia Services

Zaman, Faisal Ameen January 2017 (has links)
Currently a growing number of users depend on the Edge Cloud Computing Paradigm in a Metro Optical Network (MON). This has led to increased competition among the Cloud Service Providers (CPs) to supply incentives for the user through guaranteed Quality of Service (QoS). If the CP fails to guarantee the QoS for the accepted request, then the user will move to another CP. Making an informed decision dynamically in such a sensitive situation demands that the CP knows the user's application requirements. The Software Defined Networking (SDN) paradigm enabled the CP to achieve such desired requirement. Therefore, a framework called Virtual Network Embedding on SDN-based Metro Optical Network (VNE-MON) is proposed in this Thesis. The use of SDN paradigm in the framework guarantees profit to the CP as well as QoS to the user.\par The design concept of the SDN control plane, raises concerns regarding its scalability, reliability and performance compared to a traditionally distributed network. To justify concerns regarding the SDN, the performance of VNE-MON and its possible dependancy on the controller location is investigated. Several strategies are proposed and formulated using Integer Linear Programming to determine the controller location in a MON. Performance results from the assessment of the VNE-MON illustrates that it is more stable compare to GMPLS-based network. It is evident that the controller location's attributes have a significant effect on the efficacy of the accepted VN request.
505

Estabelecimento de um meio quimicamente definido para desenvolvimento de Haemophilus influenzae  tipo b e produção de polissacarídeo capsular. / Establishment of a chemically defined medium for development of Haemophilus influenzae type b and capsular polysaccharide production.

Paola Rizzo de Paiva 28 September 2016 (has links)
Haemophilus influenzae b (Hib) é uma bactéria patogênica causadora de pneumonia e meningite. Sua cápsula polissacarídica (PRP) é considerada como principal fator de virulência e utilizada como antígeno vacinal. Hib é fastidioso e requer micronutrientes para seu desenvolvimento. A finalidade deste trabalho é estabelecer o meio quimicamente definido para desenvolvimento de Hib e produção de PRP. Inicialmente, definiu-se um meio a partir de dados da literatura. Este meio foi estudado através do delineamento de Plackett-Burman de 44 ensaios, obtendo-se valores máximos de DO540nm de 5,0 UA, e 227,7 mg/L de PRP. A análise estatística revelou que EDTA, NH4Cl, Cys e PVA podem ser removidos do meio sem impactar os parâmetros estudados e que Glm, Hipoxantina, Inosina, Tiamina, Hemina e Tween 80 apresentam efeito significativo positivo para produção de PRP. Analisando os meios estudados, foi possível verificar que a composição do E44 possibilitou produzir o PRP a US$ 16,50/g, sendo considerado o meio quimicamente definido estabelecido neste trabalho. / Haemophilus influenzae b (Hib) is a pathogenic bacterium that causes pneumonia and meningitis. Its capsular polysaccharide (PRP) is considered as a major virulence factor and used as vaccine antigen. Hib is fastidious and requires micronutrients for its development. The purpose of this study is to establish the chemically defined medium for Hib development and PRP production. Initially, a medium was defined based in the literature. This medium was studied by the Plackett-Burman design of 44 trials, achieving maximum values of DO540nm of 5.0 AU and 227.7 mg / L of PRP. Statistical analysis revealed that EDTA, NH4Cl, Cys and PVA can be removed from the medium without impacting the parameters studied and Glm, Hypoxanthine, Inosine, Thiamine, Tween 80 and Hemin exhibit significant positive effect on the PRP production. Analyzing the studied media, it was possible to verify that the composition of E44 enabled to produce PRP to $ 16.50/g, being considered the chemically defined medium established in this work.
506

Model based testing techniques for software defined networks / Méthodes de test basées sur les modèles pour la validation des réseaux logiciels (SDN)

Berriri, Asma 22 October 2019 (has links)
Les réseaux logiciels (connus sous l'éppellation: Software Defined Networking, SDN), qui s'appuient sur le paradigme de séparation du plan de contrôle et du plan d'acheminement, ont fortement progressé ces dernières années pour permettre la programmabilité des réseaux et faciliter leur gestion. Reconnu aujourd'hui comme des architectures logicielles pilotées par des applications, offrant plus de programmabilité, de flexibilité et de simplification des infrastructures, les réseaux logiciels sont de plus en plus largement adoptés et graduellement déployés par l'ensemble des fournisseurs. Néanmoins, l'émergence de ce type d'architectures pose un ensemble de questions fondamentales sur la manière de garantir leur correct fonctionnement. L'architecture logicielle SDN est elle-même un système complexe à plusieurs composants vulnérable aux erreurs. Il est essentiel d'en assurer le bon fonctionnement avant déploiement et intégration dans les infrastructures.Dans la littérature, la manière de réaliser cette tâche n'a été étudiée de manière approfondie qu'à l'aide de vérification formelle. Les méthodes de tests s'appuyant sur des modèles n'ont guère retenu l'attention de la communauté scientifique bien que leur pertinence et l'efficacité des tests associés ont été largement demontrés dans le domaine du développement logiciel. La création d'approches de test efficaces et réutilisables basées sur des modèles nous semble une approche appropriée avant tout déploiement de réseaux virtuels et de leurs composants. Le problème abordé dans cette thèse concerne l'utilisation de modèles formels pour garantir un comportement fonctionnel correct des architectures SDN ainsi que de leurs composants. Des approches formelles, structurées et efficaces de génération de tests sont les principale contributions de la thèse. En outre, l'automatisation du processus de test est mis en relief car elle peut en réduire considérablement les efforts et le coût.La première contribution consiste en une méthode reposant sur l'énumération de graphes et qui vise le test fonctionnel des architectures SDN. En second lieu, une méthode basée sur un circuit logique est développée pour tester la fonctionnalité de transmission d'un commutateur SDN. Plus loin, cette dernière méthode est étendue pour tester une application d'un contrôleur SDN. De plus, une technique basée sur une machine à états finis étendus est introduite pour tester la communication commutateur-contrôleur.Comme la qualité d'une suite de tests est généralement mesurée par sa couverture de fautes, les méthodes de test proposées introduisent différents modèles de fautes et génèrent des suites de tests avec une couverture de fautes guarantie. / Having gained momentum from its concept of decoupling the traffic control from the underlying traffic transmission, Software Defined Networking (SDN) is a new networking paradigm that is progressing rapidly addressing some of the long-standing challenges in computer networks. Since they are valuable and crucial for networking, SDN architectures are subject to be widely deployed and are expected to have the greatest impact in the near future. The emergence of SDN architectures raises a set of fundamental questions about how to guarantee their correctness. Although their goal is to simplify the management of networks, the challenge is that the SDN software architecture itself is a complex and multi-component system which is failure-prone. Therefore, assuring the correct functional behaviour of such architectures and related SDN components is a task of paramount importance, yet, decidedly challenging.How to achieve this task, however, has only been intensively investigated using formal verification, with little attention paid to model based testing methods. Furthermore, the relevance of models and the efficiency of model based testing have been demonstrated for software engineering and particularly for network protocols. Thus, the creation of efficient and reusable model based testing approaches becomes an important stage before the deployment of virtual networks and related components. The problem addressed in this thesis relates to the use of formal models for guaranteeing the correct functional behaviour of SDN architectures and their corresponding components. Formal, and effective test generation approaches are in the primary focus of the thesis. In addition, automation of the test process is targeted as it can considerably cut the efforts and cost of testing.The main contributions of the thesis relate to model based techniques for deriving high quality test suites. Firstly, a method relying on graph enumeration is proposed for the functional testing of SDN architectures. Secondly, a method based on logic circuit is developed for testing the forwarding functionality of an SDN switch. Further on, the latter method is extended to test an application of an SDN controller. Additionally, a technique based on an extended finite state machine is introduced for testing the switch-to-controller communication. As the quality of a test suite is usually measured by its fault coverage, the proposed testing methods introduce different fault models and seek for test suites with guaranteed fault coverage that can be stated as sufficient conditions for a test suite completeness / exhaustiveness.
507

Software-defined Situation-aware Cloud Security

January 2020 (has links)
abstract: The use of reactive security mechanisms in enterprise networks can, at times, provide an asymmetric advantage to the attacker. Similarly, the use of a proactive security mechanism like Moving Target Defense (MTD), if performed without analyzing the effects of security countermeasures, can lead to security policy and service level agreement violations. In this thesis, I explore the research questions 1) how to model attacker-defender interactions for multi-stage attacks? 2) how to efficiently deploy proactive (MTD) security countermeasures in a software-defined environment for single and multi-stage attacks? 3) how to verify the effects of security and management policies on the network and take corrective actions? I propose a Software-defined Situation-aware Cloud Security framework, that, 1) analyzes the attacker-defender interactions using an Software-defined Networking (SDN) based scalable attack graph. This research investigates Advanced Persistent Threat (APT) attacks using a scalable attack graph. The framework utilizes a parallel graph partitioning algorithm to generate an attack graph quickly and efficiently. 2) models single-stage and multi-stage attacks (APTs) using the game-theoretic model and provides SDN-based MTD countermeasures. I propose a Markov Game for modeling multi-stage attacks. 3) introduces a multi-stage policy conflict checking framework at the SDN network's application plane. I present INTPOL, a new intent-driven security policy enforcement solution. INTPOL provides a unified language and INTPOL grammar that abstracts the network administrator from the underlying network controller's lexical rules. INTPOL develops a bounded formal model for network service compliance checking, which significantly reduces the number of countermeasures that needs to be deployed. Once the application-layer policy conflicts are resolved, I utilize an Object-Oriented Policy Conflict checking (OOPC) framework that identifies and resolves rule-order dependencies and conflicts between security policies. / Dissertation/Thesis / Doctoral Dissertation Computer Science 2020
508

Design and prototyping of indoor positioning systems for Internet-of-Things sensor networks

Shakoori Moghadam Monfared, Shaghayegh 04 January 2021 (has links) (PDF)
Accurate indoor positioning of narrowband Internet-of-Things (IoT) sensors has drawn more attention in recent years. The introduction of Bluetooth Low Energy (BLE) technology is one of the latest developments of IoT and especially applicable for Ultra-Low Power (ULP) applications. BLE is an attractive technology for indoor positioning systems because of its low-cost deployment and reasonable accuracy. Efficient indoor positioning can be achieved by deducing the sensor position from the estimated signal Angle-of-Arrival (AoA) at multiple anchors. An anchor is a base station of known position and equipped with a narrowband multi-antenna array. However, the design and implementation of indoor positioning systems based on AoA measurements involve multiple challenges. The first part of this thesis mainly addresses the impact of hardware impairments on the accuracy of AoA measurements. In practice, the subspace-based algorithms such as Multiple Signal Classification (MUSIC) suffer from sensitivity to array calibration errors coming from hardware imperfections. A detailed experimental implementation is performed using a Software Defined Radio (SDR) platform to precisely evaluate the accuracy of AoA measurements. For this purpose, a new Over-the-Air (OTA) calibration method is proposed and the array calibration error is investigated. The experimental results are compared with the theoretical analysis. These results show that array calibration errors can cause some degrees of uncertainty in AoA estimation. Moreover, we propose iterative positioning algorithms based on AoA measurements for low capacity IoT sensors with high accuracy and fair computational complexity. Efficient positioning accuracy is obtained by iterating between the angle and position estimation steps. We first develop a Data-Aided Maximum a Posteriori (DA- MAP) estimator based on the preamble of the transmitted signal. DA-MAP estimator relies on the knowledge of the transmitted signal which makes it impractical for narrowband communications where the preamble is short. For this reason, a Non-Data- Aided Maximum a Posteriori (NDA-MAP) estimator is developed to improve the AoA accuracy. The iterative positioning algorithms are therefore classified as Data-Aided Iterative (DA-It) and Non-Data-Aided Iterative (NDA-It) depending on the knowledge of the transmitted signal that is used for estimation. Both numerical and experimental analyses are carried out to evaluate the performance of the proposed algorithms. The results show that DA-MAP and NDA-MAP estimators are more accurate than MUSIC. The results also show that DA-It comes very close to the performance of the optimal approach that directly estimates the position based on the observation of the received signal, known as Direct Position Estimation (DPE). Furthermore, the NDA-It algorithm significantly outperforms the DA-It because it can use a much higher number of samples; however, it needs more iterations to converge. In addition, we evaluate the computational savings achieved by the iterative schemes compared to DPE through a detailed complexity analysis. Finally, we investigate the performance degradation of the proposed iterative algorithms due to the impact of multipath and NLOS propagation in indoor environments. Therefore, we develop an enhanced iterative positioning algorithm with an anchor selection method in order to identify and exclude NLOS anchors. The numerical results show that applying the anchor selection strategy significantly improves the positioning accuracy in indoor environments. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
509

AN EVALUATION OF SDN AND NFV SUPPORT FOR PARALLEL, ALTERNATIVE PROTOCOL STACK OPERATIONS IN FUTURE INTERNETS

Suresh, Bhushan 09 July 2018 (has links)
Virtualization on top of high-performance servers has enabled the virtualization of network functions like caching, deep packet inspection, etc. Such Network Function Virtualization (NFV) is used to dynamically adapt to changes in network traffic and application popularity. We demonstrate how the combination of Software Defined Networking (SDN) and NFV can support the parallel operation of different Internet architectures on top of the same physical hardware. We introduce our architecture for this approach in an actual test setup, using CloudLab resources. We start of our evaluation in a small setup where we evaluate the feasibility of the SDN and NFV architecture and incrementally increase the complexity of the setup to run a live video streaming application. We use two vastly different protocol stacks, namely TCP/IP and NDN to demonstrate the capability of our approach. The evaluation of our approach shows that it introduces a new level of flexibility when it comes to operation of different Internet architectures on top of the same physical network and with this flexibility provides the ability to switch between the two protocol stacks depending on the application.
510

Jamming Detection and Classification via Conventional Machine Learning and Deep Learning with Applications to UAVs

Yuchen Li (11831105) 13 December 2021 (has links)
<div>With the constant advancement of modern radio technology, the safety of radio communication has become a growing concern for us. Communication has become an essential component, particularly in the application of modern technology such as unmanned aerial vehicle (UAV). As a result, it is critical to ensure that a drone can fly safely and reliably while completing duties. Simultaneously, machine learning (ML) is rapidly developing in the twenty-first century. For example, ML is currently being used in social media and digital marking for predicting and addressing users' varies interests. This also serves as the impetus for this thesis. The goal of this thesis is to combine ML and radio communication to identify and classify UAV interference with high accuracy.</div><div>In this work, a ML approach is explored for detecting and classifying jamming attacks against orthogonal frequency division multiplexing (OFDM) receivers, with applicability to UAVs. Four types of jamming attacks, including barrage, protocol-aware, single-tone, and successive-pulse jamming, are launched and analyzed using software-defined radio (SDR). The jamming range, launch complexity, and attack severity are all considered qualitatively when evaluating each type. Then, a systematic testing procedure is established, where a SDR is placed in the vicinity of a drone to extract radiometric features before and after a jamming attack is launched. Traditional ML methods are used to create classification models with numerical features such as signal-to-noise ratio (SNR), energy threshold, and important OFDM parameters. Furthermore, deep learning method (i.e., convolutional neural networks) are used to develop classification models trained with spectrogram images filling in it. Quantitative indicators such as detection and false alarm rates are used to evaluate the performance of both methods. The spectrogram-based model correctly classifies jamming with a precision of 99.79% and a false-alarm rate of 0.03%, compared to 92.20% and 1.35% for the feature-based counterpart.</div>

Page generated in 0.0253 seconds