Spelling suggestions: "subject:"deformable meshes"" "subject:"reformable meshes""
1 |
Perceptual guidance in mesh processing and rendering using mesh saliency / Direcionamento perceptual em processamento de malhas utilizando saliênciaMunaretti, Rodrigo Barni January 2007 (has links)
Considerações de informação perceptual têm ganhado espaço rapidamente em pesquisas referentes a representação, análise e exibição de malhas. Estudos com usuários, eye tracking e outras técnicas são capazes de fornecer informações cada vez mais úteis para sistemas voltados a usuário, que formam a maioria das aplicações em computação gráfica. Neste trabalho nós expandimos sobre o conceito de Saliência de Malhas — uma medida automática de importância visual para malhas de triângulos baseada em modelos de atenção humana em baixo nível — melhorando, extendendo e realizando integração com diferentes aplicações. Nós extendemos o conceito de Saliência de Malhas para englobar objetos deformáveis, mostrando como um mapa de saliência em nível de vértice pode ser construído capturando corretamente regiões de alta importância perceptual através de um conjunto de poses ou deformações. Nós definimos saliência multi-pose como um agregado multi-escala de valores de curvatura sobre uma vizinhança localmente estável, em conjunto com deformações desta vizinhança em múltiplas poses. Nós substituímos distância Euclideana por geodésica, assim fornecendo melhores estimativas de vizinhança local. Resultados mostram que saliência multi-pose gera resultados visualmente mais interessantes em simplificações quando comparado à saliência em uma única pose. Nós também aplicamos saliência de malhas ao problema de segmentação e rendering dependente de ponto de vista, introduzindo uma técnica para segmentação que particiona um objeto em um conjunto de clusters, cada um englobando um grupo de características localmente interessantes. Saliência de malhas é incorporada em um framework para clustering propagativo, guiando seleção de pontos de partida para clusters e custos de propagação de faces, levando a uma convergência de clusters ao redor de características perceptualmente importantes. Nós comparamos nossa técnica com diferentes métodos automáticos para segmentação, mostrando que ela fornece segmentação melhor ou comparável sem necessidade de intervenção do usuário. Uma vez que o algoritmo de segmentação proposto é especialmente aplicável a rendering multi-resolução, nós ilustramos uma aplicação do mesmo através de um sistema de rendering baseado em ponto de vista guiado por saliência, alcançando melhorias consideráveis em framerate com muito pouca perda de qualidade visual. / Considerations on perceptual information are quickly gaining importance in mesh representation, analysis and display research. User studies, eye tracking and other techniques are able to provide ever more useful insights for many user-centric systems, which form the bulk of computer graphics applications. In this work we build upon the concept of Mesh Saliency — an automatic measure of visual importance for triangle meshes based on models of low-level human visual attention—improving, extending and integrating it with different applications. We extend the concept of Mesh Saliency to encompass deformable objects, showing how a vertex-level saliency map can be constructed that accurately captures the regions of high perceptual importance over a range of mesh poses or deformations. We define multipose saliency as a multi-scale aggregate of curvature values over a locally stable vertex neighborhood together with deformations over multiple poses. We replace the use of the Euclidean distance by geodesic distance thereby providing superior estimates of the local neighborhood. Results show that multi-pose saliency generates more visually appealing mesh simplifications when compared to a single-pose mesh saliency. We also apply Mesh Saliency to the problem of mesh segmentation and view-dependent rendering, introducing a technique for segmentation that partitions an object into a set of face clusters, each encompassing a group of locally interesting features. Mesh Saliency is incorporated in a propagative mesh clustering framework, guiding cluster seed selection and triangle propagation costs and leading to a convergence of face clusters around perceptually important features. We compare our technique with different fully automatic segmentation algorithms, showing that it provides similar or better segmentation without the need for user input. Since the proposed clustering algorithm is specially suitable for multi-resolution rendering, we illustrate application of our clustering results through a saliency-guided view-dependent rendering system, achieving significant framerate increases with little loss of visual detail.
|
2 |
Perceptual guidance in mesh processing and rendering using mesh saliency / Direcionamento perceptual em processamento de malhas utilizando saliênciaMunaretti, Rodrigo Barni January 2007 (has links)
Considerações de informação perceptual têm ganhado espaço rapidamente em pesquisas referentes a representação, análise e exibição de malhas. Estudos com usuários, eye tracking e outras técnicas são capazes de fornecer informações cada vez mais úteis para sistemas voltados a usuário, que formam a maioria das aplicações em computação gráfica. Neste trabalho nós expandimos sobre o conceito de Saliência de Malhas — uma medida automática de importância visual para malhas de triângulos baseada em modelos de atenção humana em baixo nível — melhorando, extendendo e realizando integração com diferentes aplicações. Nós extendemos o conceito de Saliência de Malhas para englobar objetos deformáveis, mostrando como um mapa de saliência em nível de vértice pode ser construído capturando corretamente regiões de alta importância perceptual através de um conjunto de poses ou deformações. Nós definimos saliência multi-pose como um agregado multi-escala de valores de curvatura sobre uma vizinhança localmente estável, em conjunto com deformações desta vizinhança em múltiplas poses. Nós substituímos distância Euclideana por geodésica, assim fornecendo melhores estimativas de vizinhança local. Resultados mostram que saliência multi-pose gera resultados visualmente mais interessantes em simplificações quando comparado à saliência em uma única pose. Nós também aplicamos saliência de malhas ao problema de segmentação e rendering dependente de ponto de vista, introduzindo uma técnica para segmentação que particiona um objeto em um conjunto de clusters, cada um englobando um grupo de características localmente interessantes. Saliência de malhas é incorporada em um framework para clustering propagativo, guiando seleção de pontos de partida para clusters e custos de propagação de faces, levando a uma convergência de clusters ao redor de características perceptualmente importantes. Nós comparamos nossa técnica com diferentes métodos automáticos para segmentação, mostrando que ela fornece segmentação melhor ou comparável sem necessidade de intervenção do usuário. Uma vez que o algoritmo de segmentação proposto é especialmente aplicável a rendering multi-resolução, nós ilustramos uma aplicação do mesmo através de um sistema de rendering baseado em ponto de vista guiado por saliência, alcançando melhorias consideráveis em framerate com muito pouca perda de qualidade visual. / Considerations on perceptual information are quickly gaining importance in mesh representation, analysis and display research. User studies, eye tracking and other techniques are able to provide ever more useful insights for many user-centric systems, which form the bulk of computer graphics applications. In this work we build upon the concept of Mesh Saliency — an automatic measure of visual importance for triangle meshes based on models of low-level human visual attention—improving, extending and integrating it with different applications. We extend the concept of Mesh Saliency to encompass deformable objects, showing how a vertex-level saliency map can be constructed that accurately captures the regions of high perceptual importance over a range of mesh poses or deformations. We define multipose saliency as a multi-scale aggregate of curvature values over a locally stable vertex neighborhood together with deformations over multiple poses. We replace the use of the Euclidean distance by geodesic distance thereby providing superior estimates of the local neighborhood. Results show that multi-pose saliency generates more visually appealing mesh simplifications when compared to a single-pose mesh saliency. We also apply Mesh Saliency to the problem of mesh segmentation and view-dependent rendering, introducing a technique for segmentation that partitions an object into a set of face clusters, each encompassing a group of locally interesting features. Mesh Saliency is incorporated in a propagative mesh clustering framework, guiding cluster seed selection and triangle propagation costs and leading to a convergence of face clusters around perceptually important features. We compare our technique with different fully automatic segmentation algorithms, showing that it provides similar or better segmentation without the need for user input. Since the proposed clustering algorithm is specially suitable for multi-resolution rendering, we illustrate application of our clustering results through a saliency-guided view-dependent rendering system, achieving significant framerate increases with little loss of visual detail.
|
3 |
Perceptual guidance in mesh processing and rendering using mesh saliency / Direcionamento perceptual em processamento de malhas utilizando saliênciaMunaretti, Rodrigo Barni January 2007 (has links)
Considerações de informação perceptual têm ganhado espaço rapidamente em pesquisas referentes a representação, análise e exibição de malhas. Estudos com usuários, eye tracking e outras técnicas são capazes de fornecer informações cada vez mais úteis para sistemas voltados a usuário, que formam a maioria das aplicações em computação gráfica. Neste trabalho nós expandimos sobre o conceito de Saliência de Malhas — uma medida automática de importância visual para malhas de triângulos baseada em modelos de atenção humana em baixo nível — melhorando, extendendo e realizando integração com diferentes aplicações. Nós extendemos o conceito de Saliência de Malhas para englobar objetos deformáveis, mostrando como um mapa de saliência em nível de vértice pode ser construído capturando corretamente regiões de alta importância perceptual através de um conjunto de poses ou deformações. Nós definimos saliência multi-pose como um agregado multi-escala de valores de curvatura sobre uma vizinhança localmente estável, em conjunto com deformações desta vizinhança em múltiplas poses. Nós substituímos distância Euclideana por geodésica, assim fornecendo melhores estimativas de vizinhança local. Resultados mostram que saliência multi-pose gera resultados visualmente mais interessantes em simplificações quando comparado à saliência em uma única pose. Nós também aplicamos saliência de malhas ao problema de segmentação e rendering dependente de ponto de vista, introduzindo uma técnica para segmentação que particiona um objeto em um conjunto de clusters, cada um englobando um grupo de características localmente interessantes. Saliência de malhas é incorporada em um framework para clustering propagativo, guiando seleção de pontos de partida para clusters e custos de propagação de faces, levando a uma convergência de clusters ao redor de características perceptualmente importantes. Nós comparamos nossa técnica com diferentes métodos automáticos para segmentação, mostrando que ela fornece segmentação melhor ou comparável sem necessidade de intervenção do usuário. Uma vez que o algoritmo de segmentação proposto é especialmente aplicável a rendering multi-resolução, nós ilustramos uma aplicação do mesmo através de um sistema de rendering baseado em ponto de vista guiado por saliência, alcançando melhorias consideráveis em framerate com muito pouca perda de qualidade visual. / Considerations on perceptual information are quickly gaining importance in mesh representation, analysis and display research. User studies, eye tracking and other techniques are able to provide ever more useful insights for many user-centric systems, which form the bulk of computer graphics applications. In this work we build upon the concept of Mesh Saliency — an automatic measure of visual importance for triangle meshes based on models of low-level human visual attention—improving, extending and integrating it with different applications. We extend the concept of Mesh Saliency to encompass deformable objects, showing how a vertex-level saliency map can be constructed that accurately captures the regions of high perceptual importance over a range of mesh poses or deformations. We define multipose saliency as a multi-scale aggregate of curvature values over a locally stable vertex neighborhood together with deformations over multiple poses. We replace the use of the Euclidean distance by geodesic distance thereby providing superior estimates of the local neighborhood. Results show that multi-pose saliency generates more visually appealing mesh simplifications when compared to a single-pose mesh saliency. We also apply Mesh Saliency to the problem of mesh segmentation and view-dependent rendering, introducing a technique for segmentation that partitions an object into a set of face clusters, each encompassing a group of locally interesting features. Mesh Saliency is incorporated in a propagative mesh clustering framework, guiding cluster seed selection and triangle propagation costs and leading to a convergence of face clusters around perceptually important features. We compare our technique with different fully automatic segmentation algorithms, showing that it provides similar or better segmentation without the need for user input. Since the proposed clustering algorithm is specially suitable for multi-resolution rendering, we illustrate application of our clustering results through a saliency-guided view-dependent rendering system, achieving significant framerate increases with little loss of visual detail.
|
4 |
Modélisation 3D à partir d'images : contributions en reconstruction photométrique à l'aide de maillages déformables / Multi-view Shape Modeling from Images : Contributions to Photometric-based Reconstruction using Deformable MeshesDelaunoy, Amaël 02 December 2011 (has links)
Comprendre, analyser et modéliser l'environment 3D à partir d'images provenant de caméras et d'appareils photos est l'un des défis majeurs actuel de recherche en vision par ordinateur. Cette thèse s'interesse à plusieurs aspects géométriques et photometriques liés à la reconstruction de surface à partir de plusieurs caméras calibrées. La reconstruction 3D est vue comme un problème de rendu inverse, et vise à minimiser une fonctionnelle d'énergie afin d'optimiser un maillage triangulaire représentant la surface à reconstruire. L'énergie est définie via un modèle génératif faisant naturellement apparaître des attributs tels que la visibilité ou la photométrie. Ainsi, l'approche présentée peut indifférement s'adapter à divers cas d'application tels que la stéréovision multi-vues, la stéréo photométrique multi-vues ou encore le “shape from shading” multi-vues. Plusieurs approches sont proposées afin de résoudre les problèmes de correspondances de l'apparence pour des scènes non Lambertiennes, dont l'apparence varie en fonction du point de vue. La segmentation, la stéréo photométrique ou encore la réciprocité d'Helmholtz sont des éléments étudiés afin de contraindre la reconstruction. L'exploitation de ces contraintes dans le cadre de reconstruction multi-vues permet de reconstruire des modèles complets 3D avec une meilleure qualité. / Understanding, analyzing and modeling the 3D world from 2D pictures and videos is probably one of the most exciting and challenging problem of computer vision. In this thesis, we address several geometric and photometric aspects to 3D surface reconstruction from multi-view calibrated images. We first formulate multi-view shape reconstruction as an inverse rendering problem. Using generative models, we formulate the problem as an energy minimization method that leads to the non-linear surface optimization of a deformable mesh. A particular attention is addressed to the computation of the discrete gradient flow, which leads to coherent vertices displacements. We particularly focus on models and energy functionals that depend on visibility and photometry. The same framework can then be equally used to perform multi-view stereo, multi-view shape from shading or multi-view photometric stereo. Then, we propose to exploit different additional information to constraint the problem in the non-Lambertian case, where the appearance of the scene depends on the view-point direction. Segmentation for instance can be used to segment surface regions sharing similar appearance or reflectance. Helmholtz reciprocity can also be applied to reconstruct 3D shapes of objects of any arbitrary reflectance properties. By taking multiple image-light pairs around an object, multi-view Helmholtz stereo can be performed. Using this constrained acquisition scenario and our deformable mesh framework, it is possible to reconstruct high quality 3D models.
|
Page generated in 0.0422 seconds