Spelling suggestions: "subject:"mesh segmentation"" "subject:"esh segmentation""
1 |
"Segmentação de imagens e validação de classes por abordagem estocástica" / Image segmentation and class validation in a stochastic approachGerhardinger, Leandro Cavaleri 13 April 2006 (has links)
Uma etapa de suma importância na análise automática de imagens é a segmentação, que procura dividir uma imagem em regiões cujos pixels exibem um certo grau de similaridade. Uma característica que provê similaridade entre pixels de uma mesma região é a textura, formada geralmente pela combinação aleatória de suas intensidades. Muitos trabalhos vêm sendo realizados com o intuito de estudar técnicas não-supervisionadas de segmentação de imagens por modelos estocásticos, definindo texturas como campos aleatórios de Markov. Um método com esta abordagem que se destaca é o EM/MPM, um algoritmo iterativo que combina a técnica EM para realizar uma estimação de parâmetros por máxima verossimilhança com a MPM, utilizada para segmentação pela minimização do número de pixels erroneamente classificados. Este trabalho desenvolveu um estudo sobre a modelagem e a implementação do algoritmo EM/MPM, juntamente com sua abordagem multiresolução. Foram propostas uma estimação inicial de parâmetros por limiarização e uma combinação com o algoritmo de Annealing. Foi feito também um estudo acerca da validação de classes, ou seja, a busca pelo número de regiões diferentes na imagem, mostrando as principais técnicas encontradas na literatura e propondo uma nova abordagem, baseada na distribuição dos níveis de cinza das classes. Por fim, foi desenvolvida uma extensão do modelo para a segmentação de malhas em duas e três dimensões. / An important stage of the automatic image analysis process is segmentation, that aims to split an image into regions whose pixels exhibit a certain degree of similarity. Texture is known as an efficient feature that provides enough discriminant power to differenciate pixels from distinct regions. It is usually defined as a random combination of pixel intensities. A considerable amount of researches has been done on non-supervised techniques for image segmentation based on stochastic models, in which texture is defined as Markov Random Fields. Such an important method in this category is the EM/MPM, an iterative algorithm that combines the maximum-likelihood parameter estimation model EM with the MPM segmentation algorithm, whose aim is to minimize the number of misclassified pixels in the image. This work has carried out a study on stochastic models for segmentation and shows an implementation for the EM/MPM algorithm, together with a multiresolution approach. A new threshold-based scheme for the estimation of initial parameters for the EM/MPM model has been proposed. This work also shows how to incorporate the concept of annealing to the current EM/MPM algorithm in order to improve segmentation. Additionally, a study on the class validity problem (search for the correct number of classes) has been done, showing the most important techniques available in the literature. As a consequence, a gray level distribution-based approach has been devised. Finally, the work shows an extension of the traditional EM/MPM technique for segmenting 2D and 3D meshes.
|
2 |
Intégration de connaissances anatomiques a priori dans des modèles géométriques / Integration of anatomic a priori knowledge into geometric modelsHassan, Sahar 20 June 2011 (has links)
L'imagerie médicale est une ressource de données principale pour différents types d'applications. Bien que les images concrétisent beaucoup d'informations sur le cas étudié, toutes les connaissances a priori du médecin restent implicites. Elles jouent cependant un rôle très important dans l'interprétation et l'utilisation des images médicales. Dans cette thèse, des connaissances anatomiques a priori sont intégrées dans deux applications médicales. Nous proposons d'abord une chaîne de traitement automatique qui détecte, quantifie et localise des anévrismes dans un arbre vasculaire segmenté. Des lignes de centre des vaisseaux sont extraites et permettent la détection et la quantification automatique des anévrismes. Pour les localiser, une mise en correspondance est faite entre l'arbre vasculaire du patient et un arbre vasculaire sain. Les connaissances a priori sont fournies sous la forme d'un graphe. Dans le contexte de l'identification des sous-parties d'un organe représenté sous forme de maillage, nous proposons l'utilisation d'une ontologie anatomique, que nous enrichissons avec toutes les informations nécessaires pour accomplir la tâche de segmentation de maillages. Nous proposons ensuite un nouvel algorithme pour cette tâche, qui profite de toutes les connaissances a priori disponibles dans l'ontologie. / Medical imaging is a principal data source for different applications. Even though medical images represent a lot of knowledge concerning the studied case, all the a priori knowledge known by the specialist remains implicit. Nevertheless this a priori knowledge has a major role in the interpretation and the use of the images. In this thesis, anatomical a priori knowledge is integrated in two medical applications. First, an automatic processing pipeline is proposed in order to detect, quantify and localize aneurysms on a segmented cerebrovascular tree. Centerlines of blood vessels are extracted and then used to automatically detect aneurysms and quantify them. To localize aneurysm, a matching is made between the cerebrovascular tree of the patient and a healthy one. The a priori knowledge, in this case, is represented by a graph. In the context of identifying sub-parts of an organ represented by a mesh, we propose the use of an anatomical ontology. This ontology is first enhanced by all information necessary to achieve the task of mesh segmenting. A new algorithm using this ontology to accomplish the segmentation task is then proposed.
|
3 |
Perceptual guidance in mesh processing and rendering using mesh saliency / Direcionamento perceptual em processamento de malhas utilizando saliênciaMunaretti, Rodrigo Barni January 2007 (has links)
Considerações de informação perceptual têm ganhado espaço rapidamente em pesquisas referentes a representação, análise e exibição de malhas. Estudos com usuários, eye tracking e outras técnicas são capazes de fornecer informações cada vez mais úteis para sistemas voltados a usuário, que formam a maioria das aplicações em computação gráfica. Neste trabalho nós expandimos sobre o conceito de Saliência de Malhas — uma medida automática de importância visual para malhas de triângulos baseada em modelos de atenção humana em baixo nível — melhorando, extendendo e realizando integração com diferentes aplicações. Nós extendemos o conceito de Saliência de Malhas para englobar objetos deformáveis, mostrando como um mapa de saliência em nível de vértice pode ser construído capturando corretamente regiões de alta importância perceptual através de um conjunto de poses ou deformações. Nós definimos saliência multi-pose como um agregado multi-escala de valores de curvatura sobre uma vizinhança localmente estável, em conjunto com deformações desta vizinhança em múltiplas poses. Nós substituímos distância Euclideana por geodésica, assim fornecendo melhores estimativas de vizinhança local. Resultados mostram que saliência multi-pose gera resultados visualmente mais interessantes em simplificações quando comparado à saliência em uma única pose. Nós também aplicamos saliência de malhas ao problema de segmentação e rendering dependente de ponto de vista, introduzindo uma técnica para segmentação que particiona um objeto em um conjunto de clusters, cada um englobando um grupo de características localmente interessantes. Saliência de malhas é incorporada em um framework para clustering propagativo, guiando seleção de pontos de partida para clusters e custos de propagação de faces, levando a uma convergência de clusters ao redor de características perceptualmente importantes. Nós comparamos nossa técnica com diferentes métodos automáticos para segmentação, mostrando que ela fornece segmentação melhor ou comparável sem necessidade de intervenção do usuário. Uma vez que o algoritmo de segmentação proposto é especialmente aplicável a rendering multi-resolução, nós ilustramos uma aplicação do mesmo através de um sistema de rendering baseado em ponto de vista guiado por saliência, alcançando melhorias consideráveis em framerate com muito pouca perda de qualidade visual. / Considerations on perceptual information are quickly gaining importance in mesh representation, analysis and display research. User studies, eye tracking and other techniques are able to provide ever more useful insights for many user-centric systems, which form the bulk of computer graphics applications. In this work we build upon the concept of Mesh Saliency — an automatic measure of visual importance for triangle meshes based on models of low-level human visual attention—improving, extending and integrating it with different applications. We extend the concept of Mesh Saliency to encompass deformable objects, showing how a vertex-level saliency map can be constructed that accurately captures the regions of high perceptual importance over a range of mesh poses or deformations. We define multipose saliency as a multi-scale aggregate of curvature values over a locally stable vertex neighborhood together with deformations over multiple poses. We replace the use of the Euclidean distance by geodesic distance thereby providing superior estimates of the local neighborhood. Results show that multi-pose saliency generates more visually appealing mesh simplifications when compared to a single-pose mesh saliency. We also apply Mesh Saliency to the problem of mesh segmentation and view-dependent rendering, introducing a technique for segmentation that partitions an object into a set of face clusters, each encompassing a group of locally interesting features. Mesh Saliency is incorporated in a propagative mesh clustering framework, guiding cluster seed selection and triangle propagation costs and leading to a convergence of face clusters around perceptually important features. We compare our technique with different fully automatic segmentation algorithms, showing that it provides similar or better segmentation without the need for user input. Since the proposed clustering algorithm is specially suitable for multi-resolution rendering, we illustrate application of our clustering results through a saliency-guided view-dependent rendering system, achieving significant framerate increases with little loss of visual detail.
|
4 |
Perceptual guidance in mesh processing and rendering using mesh saliency / Direcionamento perceptual em processamento de malhas utilizando saliênciaMunaretti, Rodrigo Barni January 2007 (has links)
Considerações de informação perceptual têm ganhado espaço rapidamente em pesquisas referentes a representação, análise e exibição de malhas. Estudos com usuários, eye tracking e outras técnicas são capazes de fornecer informações cada vez mais úteis para sistemas voltados a usuário, que formam a maioria das aplicações em computação gráfica. Neste trabalho nós expandimos sobre o conceito de Saliência de Malhas — uma medida automática de importância visual para malhas de triângulos baseada em modelos de atenção humana em baixo nível — melhorando, extendendo e realizando integração com diferentes aplicações. Nós extendemos o conceito de Saliência de Malhas para englobar objetos deformáveis, mostrando como um mapa de saliência em nível de vértice pode ser construído capturando corretamente regiões de alta importância perceptual através de um conjunto de poses ou deformações. Nós definimos saliência multi-pose como um agregado multi-escala de valores de curvatura sobre uma vizinhança localmente estável, em conjunto com deformações desta vizinhança em múltiplas poses. Nós substituímos distância Euclideana por geodésica, assim fornecendo melhores estimativas de vizinhança local. Resultados mostram que saliência multi-pose gera resultados visualmente mais interessantes em simplificações quando comparado à saliência em uma única pose. Nós também aplicamos saliência de malhas ao problema de segmentação e rendering dependente de ponto de vista, introduzindo uma técnica para segmentação que particiona um objeto em um conjunto de clusters, cada um englobando um grupo de características localmente interessantes. Saliência de malhas é incorporada em um framework para clustering propagativo, guiando seleção de pontos de partida para clusters e custos de propagação de faces, levando a uma convergência de clusters ao redor de características perceptualmente importantes. Nós comparamos nossa técnica com diferentes métodos automáticos para segmentação, mostrando que ela fornece segmentação melhor ou comparável sem necessidade de intervenção do usuário. Uma vez que o algoritmo de segmentação proposto é especialmente aplicável a rendering multi-resolução, nós ilustramos uma aplicação do mesmo através de um sistema de rendering baseado em ponto de vista guiado por saliência, alcançando melhorias consideráveis em framerate com muito pouca perda de qualidade visual. / Considerations on perceptual information are quickly gaining importance in mesh representation, analysis and display research. User studies, eye tracking and other techniques are able to provide ever more useful insights for many user-centric systems, which form the bulk of computer graphics applications. In this work we build upon the concept of Mesh Saliency — an automatic measure of visual importance for triangle meshes based on models of low-level human visual attention—improving, extending and integrating it with different applications. We extend the concept of Mesh Saliency to encompass deformable objects, showing how a vertex-level saliency map can be constructed that accurately captures the regions of high perceptual importance over a range of mesh poses or deformations. We define multipose saliency as a multi-scale aggregate of curvature values over a locally stable vertex neighborhood together with deformations over multiple poses. We replace the use of the Euclidean distance by geodesic distance thereby providing superior estimates of the local neighborhood. Results show that multi-pose saliency generates more visually appealing mesh simplifications when compared to a single-pose mesh saliency. We also apply Mesh Saliency to the problem of mesh segmentation and view-dependent rendering, introducing a technique for segmentation that partitions an object into a set of face clusters, each encompassing a group of locally interesting features. Mesh Saliency is incorporated in a propagative mesh clustering framework, guiding cluster seed selection and triangle propagation costs and leading to a convergence of face clusters around perceptually important features. We compare our technique with different fully automatic segmentation algorithms, showing that it provides similar or better segmentation without the need for user input. Since the proposed clustering algorithm is specially suitable for multi-resolution rendering, we illustrate application of our clustering results through a saliency-guided view-dependent rendering system, achieving significant framerate increases with little loss of visual detail.
|
5 |
"Segmentação de imagens e validação de classes por abordagem estocástica" / Image segmentation and class validation in a stochastic approachLeandro Cavaleri Gerhardinger 13 April 2006 (has links)
Uma etapa de suma importância na análise automática de imagens é a segmentação, que procura dividir uma imagem em regiões cujos pixels exibem um certo grau de similaridade. Uma característica que provê similaridade entre pixels de uma mesma região é a textura, formada geralmente pela combinação aleatória de suas intensidades. Muitos trabalhos vêm sendo realizados com o intuito de estudar técnicas não-supervisionadas de segmentação de imagens por modelos estocásticos, definindo texturas como campos aleatórios de Markov. Um método com esta abordagem que se destaca é o EM/MPM, um algoritmo iterativo que combina a técnica EM para realizar uma estimação de parâmetros por máxima verossimilhança com a MPM, utilizada para segmentação pela minimização do número de pixels erroneamente classificados. Este trabalho desenvolveu um estudo sobre a modelagem e a implementação do algoritmo EM/MPM, juntamente com sua abordagem multiresolução. Foram propostas uma estimação inicial de parâmetros por limiarização e uma combinação com o algoritmo de Annealing. Foi feito também um estudo acerca da validação de classes, ou seja, a busca pelo número de regiões diferentes na imagem, mostrando as principais técnicas encontradas na literatura e propondo uma nova abordagem, baseada na distribuição dos níveis de cinza das classes. Por fim, foi desenvolvida uma extensão do modelo para a segmentação de malhas em duas e três dimensões. / An important stage of the automatic image analysis process is segmentation, that aims to split an image into regions whose pixels exhibit a certain degree of similarity. Texture is known as an efficient feature that provides enough discriminant power to differenciate pixels from distinct regions. It is usually defined as a random combination of pixel intensities. A considerable amount of researches has been done on non-supervised techniques for image segmentation based on stochastic models, in which texture is defined as Markov Random Fields. Such an important method in this category is the EM/MPM, an iterative algorithm that combines the maximum-likelihood parameter estimation model EM with the MPM segmentation algorithm, whose aim is to minimize the number of misclassified pixels in the image. This work has carried out a study on stochastic models for segmentation and shows an implementation for the EM/MPM algorithm, together with a multiresolution approach. A new threshold-based scheme for the estimation of initial parameters for the EM/MPM model has been proposed. This work also shows how to incorporate the concept of annealing to the current EM/MPM algorithm in order to improve segmentation. Additionally, a study on the class validity problem (search for the correct number of classes) has been done, showing the most important techniques available in the literature. As a consequence, a gray level distribution-based approach has been devised. Finally, the work shows an extension of the traditional EM/MPM technique for segmenting 2D and 3D meshes.
|
6 |
Perceptual guidance in mesh processing and rendering using mesh saliency / Direcionamento perceptual em processamento de malhas utilizando saliênciaMunaretti, Rodrigo Barni January 2007 (has links)
Considerações de informação perceptual têm ganhado espaço rapidamente em pesquisas referentes a representação, análise e exibição de malhas. Estudos com usuários, eye tracking e outras técnicas são capazes de fornecer informações cada vez mais úteis para sistemas voltados a usuário, que formam a maioria das aplicações em computação gráfica. Neste trabalho nós expandimos sobre o conceito de Saliência de Malhas — uma medida automática de importância visual para malhas de triângulos baseada em modelos de atenção humana em baixo nível — melhorando, extendendo e realizando integração com diferentes aplicações. Nós extendemos o conceito de Saliência de Malhas para englobar objetos deformáveis, mostrando como um mapa de saliência em nível de vértice pode ser construído capturando corretamente regiões de alta importância perceptual através de um conjunto de poses ou deformações. Nós definimos saliência multi-pose como um agregado multi-escala de valores de curvatura sobre uma vizinhança localmente estável, em conjunto com deformações desta vizinhança em múltiplas poses. Nós substituímos distância Euclideana por geodésica, assim fornecendo melhores estimativas de vizinhança local. Resultados mostram que saliência multi-pose gera resultados visualmente mais interessantes em simplificações quando comparado à saliência em uma única pose. Nós também aplicamos saliência de malhas ao problema de segmentação e rendering dependente de ponto de vista, introduzindo uma técnica para segmentação que particiona um objeto em um conjunto de clusters, cada um englobando um grupo de características localmente interessantes. Saliência de malhas é incorporada em um framework para clustering propagativo, guiando seleção de pontos de partida para clusters e custos de propagação de faces, levando a uma convergência de clusters ao redor de características perceptualmente importantes. Nós comparamos nossa técnica com diferentes métodos automáticos para segmentação, mostrando que ela fornece segmentação melhor ou comparável sem necessidade de intervenção do usuário. Uma vez que o algoritmo de segmentação proposto é especialmente aplicável a rendering multi-resolução, nós ilustramos uma aplicação do mesmo através de um sistema de rendering baseado em ponto de vista guiado por saliência, alcançando melhorias consideráveis em framerate com muito pouca perda de qualidade visual. / Considerations on perceptual information are quickly gaining importance in mesh representation, analysis and display research. User studies, eye tracking and other techniques are able to provide ever more useful insights for many user-centric systems, which form the bulk of computer graphics applications. In this work we build upon the concept of Mesh Saliency — an automatic measure of visual importance for triangle meshes based on models of low-level human visual attention—improving, extending and integrating it with different applications. We extend the concept of Mesh Saliency to encompass deformable objects, showing how a vertex-level saliency map can be constructed that accurately captures the regions of high perceptual importance over a range of mesh poses or deformations. We define multipose saliency as a multi-scale aggregate of curvature values over a locally stable vertex neighborhood together with deformations over multiple poses. We replace the use of the Euclidean distance by geodesic distance thereby providing superior estimates of the local neighborhood. Results show that multi-pose saliency generates more visually appealing mesh simplifications when compared to a single-pose mesh saliency. We also apply Mesh Saliency to the problem of mesh segmentation and view-dependent rendering, introducing a technique for segmentation that partitions an object into a set of face clusters, each encompassing a group of locally interesting features. Mesh Saliency is incorporated in a propagative mesh clustering framework, guiding cluster seed selection and triangle propagation costs and leading to a convergence of face clusters around perceptually important features. We compare our technique with different fully automatic segmentation algorithms, showing that it provides similar or better segmentation without the need for user input. Since the proposed clustering algorithm is specially suitable for multi-resolution rendering, we illustrate application of our clustering results through a saliency-guided view-dependent rendering system, achieving significant framerate increases with little loss of visual detail.
|
7 |
Geração de malhas volumétricas a partir de imagens / Volumetric mesh generation from imagesCuadros-Vargas, Alex Jesús 08 February 2007 (has links)
Técnicas para gerar malhas triangulares ou tetraedrais a partir de imagens, ou assumem como entrada uma imagem pré-processada, ou geram uma malha sem distinguir as diferentes estruturas contidas na imagem. O pré-processamento e a ausência de estruturas bem definidas podem apresentar dificuldades na utilização das malhas geradas em algumas aplicações, tais como simulações numéricas. Neste trabalho, apresentamos uma nova técnica que elimina a necessidade do pré-processamento embutindo a segmentação dentro do processo de geração de malha. Além disto, a técnica proposta considera critérios de qualidade nas malhas geradas, mostrando-se apropriada para aplicações de simulação numérica assim como modelagem de imagens com malhas / Techniques devoted to generate triangular or tetrahedral meshes from images either take as starting point a pre-processed image or generate a mesh without distinguishing different structures contained in the image. The pre-process and the absence of well defined structures may impose difficulties in using the resulting mesh in some applications as, for example, numerical simulations. In this work, we present a new technique that aims at eliminating the need for pre-processing by building the segmentation into the mesh generation process. Furthermore, the proposed technique consider quality criteria in the generated meshes, being appropriated for applications in numerical simulation as well as in image modeling
|
8 |
Geração de malhas volumétricas a partir de imagens / Volumetric mesh generation from imagesAlex Jesús Cuadros-Vargas 08 February 2007 (has links)
Técnicas para gerar malhas triangulares ou tetraedrais a partir de imagens, ou assumem como entrada uma imagem pré-processada, ou geram uma malha sem distinguir as diferentes estruturas contidas na imagem. O pré-processamento e a ausência de estruturas bem definidas podem apresentar dificuldades na utilização das malhas geradas em algumas aplicações, tais como simulações numéricas. Neste trabalho, apresentamos uma nova técnica que elimina a necessidade do pré-processamento embutindo a segmentação dentro do processo de geração de malha. Além disto, a técnica proposta considera critérios de qualidade nas malhas geradas, mostrando-se apropriada para aplicações de simulação numérica assim como modelagem de imagens com malhas / Techniques devoted to generate triangular or tetrahedral meshes from images either take as starting point a pre-processed image or generate a mesh without distinguishing different structures contained in the image. The pre-process and the absence of well defined structures may impose difficulties in using the resulting mesh in some applications as, for example, numerical simulations. In this work, we present a new technique that aims at eliminating the need for pre-processing by building the segmentation into the mesh generation process. Furthermore, the proposed technique consider quality criteria in the generated meshes, being appropriated for applications in numerical simulation as well as in image modeling
|
9 |
Computerized Landmarking And Anthropometry Over Laser Scanned 3D Head And Face Surface MeshesDeo, Dhanannjay 01 1900 (has links)
Understanding of the shape and size of different features of human body from the scanned data is necessary for automated design and evaluation of product ergonomics. The traditional method of finding required body dimensions by manual measurements (Anthropometry) has many sociological, logistical and technical drawbacks such as prolonged time, skilled researcher for consistency and accuracy of measurements, undesirable physical contact between the subject and the researcher, required presence of people from different demographic categories or travel of researcher with equipments. If these di-
mensions are extracted from the stored digital human models, above drawbacks can be
eliminated.
With the emergence of laser based 3d scanners, it is now possible generate a large
database of surface models of humans from different demographic backgrounds but the
automatic processing of 3d meshes is under development. Though some commercial
packages are available for extraction of a limited number of dimensions from full body
scans, mostly belonging to topologically separable body parts like hands and legs, the dimensions associated with head and face are particularly not available in public domain. The processing of surface models of head and face from the automatic measurement
point of view is also not discussed in literature though this type of data has many practical applications like ergonomic design of close-fitting products like respiratory masks,ophthalmic frames (spectacles), helmets and similar head-mounted devices; Creation of a facial feature database for face modeling coding and reconstruction and for use in forensic sciences; Automated anthropological surveys and Medical growth analysis and aesthetic surgery planning.
Hence, in this thesis, a computational framework is developed for automatic detection, recognition and measurement of important facial features namely eyes, eyebrows, nose, mouth and moustache (if applicable) from scanned head and shoulder polyhedral models.
After preprocessing the scanned mesh manually to fill holes and remove singular
vertices, discrete differential geometric operators were implemented to compute surface normals and curvatures. Mean curvature magnitude was used as the primary metric to segment the mesh using morphological watershed algorithms which treat the mesh as a height map and separate the regions according to the water catchment basins.
After visualization it was hypothesized that the important facial features consist of
relatively high curvature regions and based on this hypothesis a much faster approach was then employed based on mathematical morphology to group the high curvature vertices into regions based on adjacency. The important feature regions isolated this way were then identified and labeled to be belonging to different facial features by a decision tree based on their relative spatial disposition. Adaptive selection of parameters was incorporated later to ensure robustness of this algorithm. Critical points of these identified features are recognized as the standard landmarks associated with those primary facial features. A number of clinically identified landmarks lie on the facial mid-line. An
efficient algorithm is proposed for detection and processing of the mid-line using a point sampling technique which is fast and has immunity to noise in the data.
An algorithm to find shortest path between two vertices while traveling along the
edges is implemented to measure on-surface distances and to isolate the nose.
Complete program comprising of curvature and surface normal computations, seg-
mentation and identification of 6 important features, facial mid-line processing, detection of total 17 landmarks and shortest path computations to separate nose takes about 2 minutes to work including visualization on a full resolution mesh of typically 2,15,521 Vertices and 4,30,560 Faces.
The algorithm was tested successfully on more than 40 faces with minor exceptions.
The results match human perception. The computed measurements were also compared with the physical measurements for a few subjects, the measurements were found to be in good agreement and satisfactory for its usage in product ergonomics and clinical applications.
|
10 |
3D Printable Designs of Rigid and Deformable ModelsYao, Miaojun January 2017 (has links)
No description available.
|
Page generated in 0.0963 seconds