Spelling suggestions: "subject:"deicing"" "subject:"peicing""
1 |
Development of a novel environmentally friendly starch-based aircraft deicerPlahuta, Joseph Matthew. January 2010 (has links) (PDF)
Thesis (M.S. in environmental engineering)--Washington State University, May 2010. / Title from PDF title page (viewed on June 18, 2010). "Department of Civil and Environmental Engineering." Includes bibliographical references (p. 28-29).
|
2 |
Minimizing the environmental impact of urea de-icer from airport runwaysFerguson, Keith Donald January 1977 (has links)
Urea finds common use at most airports in Canada where it is used as an anti-icer or de-icer. Urea contains up to 46% nitrogen which finds its way to the environment around the airport. Of the potential environmental problems, eutro-phication of lakes is of the most concern in British Columbia. Several methods for minimizing the impact of urea de-icer were considered. Urea can be hydrolyzed to ammonia by the common soil enzyme urease on an airport runway and this ammonia
can volatilize to the atmosphere. The natural enzymatic activity on runway test sections was found to cause less than 0.5% of the applied urea to hydrolyze with no volatilization after 90 minutes, at room temperature. Supplemental urease was added to pyrex models to test the effect of various conditions on hydrolysis and volatilization. Thirty-two tests were performed at various temperatures (-4, 0, 4, 120C), urease additions (100, 200, 500, 750 mg/model), ice thicknesses (3, 5, 8 mm), urea applications (0.45, 0.9, 1.8 kg/70m2), urea types (Cominco Industrial and Forestry Grade, Sherritt Gordon Mines Industrial Grade) and solar radiations (50 and 100 BTU/h-ft2). An addition of 500 mg urease to the model cuased hydrolysis of 65% of the applied urea and volatilization of 1% at 12°C. Lower temperatures produced poorer results. Relative to the high costs and low efficiency, control of urea through hydrolysis
and volatilization on an airport runway is impractical. Biological nitrification-dentrification, breakpoint chiorination, selective ion exchange, and air stripping have high nitrogen removal efficiencies under normal conditions, but are not suitable for winter airport operation.
Passage of urea through soil can be an effective method for removal of this de-icing agent if the quantity of nitrate and urea leached to surface waters is low. Published data indicates
that soil could be 75-90% efficient in controlling nitrogen
loss to surface and ground waters.
A reduction in the quantity of urea used on a runway would decrease the environmental impact. The yellow aura produced
by the urea-Ehrlich reagent reaction, was used to monitor
the movement of urea in 5 mm thick ice at -4°C. After 90 minutes from placement on the ice, the Cominco Forestry Grade aura covered the largest area. On a weight basis, however, the Sherritt Gordon Mines covered the largest area. This greater aura coverage is due to the smaller particle size of the Sherritt Gordon Mines pellets. If the size of the aura can be correlated with the ease of removal of ice from an airport runway, then the Sherritt Gordon Mines-Industrial Grade urea is more effective
as a de-icer than either of the two Cominco grades under the conditions tested.
Further research is recommended in optimizing the use of urea and soil treatment. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
|
3 |
Field investigation of anti-icing/pretreatmentIkiz, Nida. January 2004 (has links)
Thesis (M.S.)--Ohio University, March, 2004. / Title from PDF t.p. Includes bibliographical references (leaves 226-232).
|
4 |
DETERMINING EMPLOYEE EXPOSURE TO ETHYLENE GLYCOL WHILE PERFORMING MAINTENANCE ON AN AIRCRAFT DEICING FLUID COLLECTION SYSTEMCHAPMAN, DONALD RIVERS 08 October 2007 (has links)
No description available.
|
5 |
Effect of salt runoff from street deicing on a small lakeJudd, John Harvey, January 1969 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1969. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
6 |
Synergetic Algal Infrastructure: Investigating the Benefits of Algae Production in an Airport EnvironmentHiatt, Michael John 08 August 2013 (has links)
No description available.
|
7 |
Influence of rock salt impurities on limestone aggregate durabilityVarner, Jonathan January 1900 (has links)
Master of Science / Department of Civil Engineering / Kyle Riding / Some limestone coarse aggregate in concrete pavement can break down under repeated freeze-thaw cycles. Application of rock salt may increase the severity of exposure conditions because of trace compounds, such as calcium sulfate, in rock salt. Subsequently, limestone aggregate in concrete was subjected to freeze-thaw cycling in two methods: salt-treating the aggregate before batching concrete, and half-immersing concrete specimens in rock salt solution during freeze-thaw cycling. Concrete and saw-cut limestone specimens were also subjected to wet-dry cycles in varying salt solutions to examine the influence of trace compounds in rock salt. Freeze-thaw test results indicate that the test methods used were not severe enough to determine if a limestone aggregate was durable or not. The wet-dry testing was also not severe enough to determine the effects of trace compounds in salt solution.
|
8 |
Ground-Source Bridge Deck Deicing and Integrated Shallow Geothermal Energy Harvesting SystemsBowers, George Allen Jr. 08 March 2016 (has links)
Shallow geothermal energy (SGE) systems are becoming increasingly popular due to both their environmental and economic value. By using the ground as a source and sink for thermal energy, SGE systems are able to more efficiently heat and cool structures. However, their utility beyond structural heating and cooling is being realized as their applications now extend to slab and pavement heating, grain and agricultural drying, and swimming pool temperature control. Relatively recently, SGE systems have been combined with deep foundations to create a dual purpose element that can provide both structural support as well as thermal energy exchange with the subsurface. These thermo-active foundations provide the benefits of SGE systems without the additional installation costs.
One of the novel applications of thermo-active foundations is in bridge deck deicing. Bridge decks experience two main winter weather related problems. The first of which is preferential icing, where the bridge freezes before the adjacent roadway because the bridge undergoes hastened energy loss due to its exposed nature. The second problem is the accelerated deterioration of concrete bridge decks resulting from the application of salts and other chemicals that are used to prevent accumulation and/or melt the frozen precipitation on roads and bridges. By utilizing the foundation of a bridge as a mechanism by which to access the shallow geothermal energy of the subsurface, energy can be supplied to the deck during the winter to melt and/or prevent frozen precipitation.
An experimental ground-source bridge deck deicing system was constructed and the performance is discussed. Numerical models simulating the bridge deck and subsurface system components were also created and validated using the results from the numerical tests. Furthermore, the observed loads that result in a foundation from bridge deck deicing tests are shown. In order to better design for these loads, tools were developed that can predict the temperature change in the subsurface and foundation components during operation. Mechanisms by which to improve the efficiency of these systems without increasing the size of the borehole field were explored. Ultimately this research shows that SGE can effectively be used for bridge deck deicing. / Ph. D.
|
9 |
Multiphase Interfacial Phenomena for Liquid Manipulation and DefrostingLolla, Venkata Yashasvi 07 October 2024 (has links)
Interfacial phenomena are prevalent in various natural and engineered systems. A thorough understanding of these phenomena is essential for a complete understanding of processes such as phase transitions and interaction of liquid droplets with different surfaces. The insights gained from understanding interfacial behavior are pivotal in fields such as pharmaceuticals, microfluidics, material sciences, and environmental engineering. This dissertation aims to advance our understanding of interfacial behaviors, thereby facilitating the development of innovative technologies for applications in health, defrosting, and omniphobic surfaces. In Chapters 1 and 2, relevant background information and goals are provided to contextualize the research being presented in this dissertation.
Chapter 3 introduces a novel metal-free alternative to conventional antiperspirants (containing aluminum salts and zirconium salts). We leverage the composition of human sweat (97% water and 3% minerals) and employ a hygroscopic substance near the outlet of an artificial sweat duct rig. This leads to complete diffusion and dehydration of sweat, forming a natural mineral plug within the artificial sweat duct that halts the flow.
Chapter 4 examines the behavior of room temperature water droplets spreading on a flat icy substrate. The use of flat ice, as opposed to cold substrates, eliminates the nucleation energy barrier, enabling freeze front initiation as soon as the bulk temperature of the spreading drop reaches 0 C. Through scaling analysis, we identify distinct thermo-hydrodynamic regimes with varying Weber numbers.
Chapter 5 presents a novel construct for lubricant-impregnated surfaces (LIS). To date, most of the investigations characterizing the wettability of LIS have focused on droplet mobility. We pioneer a lubricant-impregnated fiber (LIF) which exhibits unique droplet dynamics due to simultaneous exploitation of both, high mobility and high adhesion.
Chapter 6 proposes an innovative approach for defrosting by exploiting the polarizability and natural thermo-voltage of frost sheets. By placing an actively charged electrode near the frost sheet, we observe that frost dendrites migrate towards the electrode. This technique, termed Electrostatic Defrosting (EDF), effectively removes up to 75% of the frost mass for superhydrophobic surfaces and 50% of the frost mass for untreated surfaces in less than 100 s. / Doctor of Philosophy / Raindrops falling on surfaces, pesticides being sprayed on crops, and frost forming on windshields—these seemingly unrelated phenomena all stem from fundamental water-structure interactions and phase change processes. We encounter these occurrences throughout nature, with some being enchanting, like water dancing on lotus leaves or morning dew sparkling on glass, while others can pose risks, such as condensation impairing visibility while driving. This dissertation aims to enhance our understanding of water-structure interactions by utilizing the phase changes of water (transitioning between vapor and ice). Through this exploration, we seek to develop innovative technologies for health, de-icing, and fog harvesting, highlighting the practical applications of such water-structure interactions.
Through four distinct projects, we aim to unlock innovative solutions that enhance everyday life and address pressing environmental challenges. In the first project, we introduce a novel antiperspirant construct that utilizes sweat's own minerals to clog sweat ducts by vaporizing water with a hygroscopic material. The second project investigates droplet dynamics on ice, focusing on how freezing initiates at the contact line when droplets make contact. In the third project, we develop a new design for oil-impregnated surfaces by embedding fibers, characterizing droplet behavior on these curved surfaces. We envision these fibers being utilized in industrial fog harvesting systems, where water can be effectively collected through dropwise condensation. Finally, we present an innovative defrosting method that exploits naturally occurring thermovoltage in frost, using a positively charged electrode to facilitate the removal of frost sheets. Together, these projects illustrate the impact of water-structure interactions on technology and the environment.
|
10 |
The Evaluation on the Effectiveness of Shields for Bridge Pier ProtectionNepal, Prateek January 2020 (has links)
No description available.
|
Page generated in 0.0463 seconds