• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 29
  • 25
  • 12
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 282
  • 84
  • 69
  • 66
  • 46
  • 42
  • 40
  • 40
  • 38
  • 38
  • 32
  • 31
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Single and multiple delamination behavior in composite plates

Huang, Haiying 12 1900 (has links)
No description available.
52

放射光高エネルギーX線による遮熱コーティングのはく離応力の評価

鈴木, 賢治, SUZUKI, Kenji, 田中, 啓介, TANAKA, Keisuke, 秋庭, 義明, AKINIWA, Yoshiaki, 川村, 昌志, KAWAMURA, Masashi, 西尾, 光司, NISHIO, Koji, 尾角, 英毅, OKADO, Hideki 05 1900 (has links)
No description available.
53

Entwicklung eines Schädigungsmodells des Delaminationsprozesses von Polyurethanbandagen bei Schwerlasträdern /

Langenohl, Aljoscha. January 2008 (has links) (PDF)
Univ., Diss.--Dortmund, 2007.
54

Computational methods for the prediction of emergence and growth of delaminations in laminated composite components /

Wimmer, Gerald. January 2009 (has links)
Zugl.: Wien, Techn. University, Diss., 2009.
55

Effect of Z-Fiber® pinning on the mechanical properties of carbon fibre/epoxy composites

Troulis, Emmanouil January 2003 (has links)
This study investigates the effects of Z-pinning on the delamination performance in opening and shear loading modes in woven fabric reinforced / epoxy composite materials, as well as the effects of friction between specimen crack faces and the Z-pin failure mechanisms involved in mode II delamination. Mode I and mode II delamination tests are carried out on Z-pinned unidirectional (UD) and woven laminates. Both UD and woven laminates exhibit enhanced delamination resistance and crack propagation stability through Z-pinning. The effects of various structural and Z-pin parameters on the mode I and mode II delamination behaviour are separately assessed. The 4ENF testing configuration is deemed as the appropriate mode II configuration for the testing of Z-pinned laminates. A new basic friction rig is used to measure the friction coefficient between crack faces in woven laminates. An additional friction effect attributed to fibre architecture is identified. A specially designed delamination specimen is used to overcome the difficulty of accurately measuring crack propagation in Z-pinned woven fabric materials and aid data reduction using the available analytical methods. The failure mechanisms involved in the mode II delamination of Z-pinned laminates have been investigated with the implementation of a new test. Z-pins fail under shear loading through a combination of resin crushing, laminate fibre breakage, pin shear, pin bending and pin pullout. The balance of the failure mechanisms is shown to be a function of the crack opening constraint, material type, stacking sequence, Z-pin angle and insertion depth to Z-pin diameter ratio. Z-pin and material parameters influencing Z-pinning quality are identified, categorised and quantified. The importance of controlling Z-pin insertion depth is underlined and updated manufacturing procedures are proposed. Partial pinning appears as an advantageous alternative. A reduction in in-plane stiffness and in-plane strength in UD and woven fabric composites is measured, whilst no significant change of in-plane shear stiffness of UD materials is observed. A reduction in the fibre volume fraction is the single most important parameter affecting the in-plane stiffness. The performance of a Z-pinned sub-structural component is investigated. Enhanced loading carrying capacity and damage tolerance is achieved through Z-pinning.
56

Un mésomodèle d’endommagement des composites stratifiés pour le virtual testing : identification et validation / A damage mesomodel of laminated composites for the virtual testing : identification and validation

Abisset, Emmanuelle 06 July 2012 (has links)
Afin de fiabiliser la démarche de conception par simulation numérique des structures en composites stratifiés, l’industrie a besoin de modèles matériau dédiés pertinents et de code de calcul robustes. L’objectif de ce travail est de répondre à une partie de ces besoins : valider un mésomodèle d’endommagement des stratifiés, celui développé au LMT Cachan, pour le virtual testing. Une démarche de validation est proposée, basée sur le suivi de l’évolution des mécanismes de dégradation dans le matériau jusqu’à la rupture de l’éprouvette. Elle est ensuite appliquée au modèle sur des essais de tractions sur plaques trouées et d’indentation statique, avec études des effets d’échelle. Le premier cas test montre la capacité du modèle à reproduire le changement de mode de rupture, d’une rupture dominée par la rupture des fibres à celle dominée par le délaminage, mais souligne aussi une certaine faiblesse pour la représentation des zones d’endommagement localisées (splits). Une étude complémentaire, axée sur les mécanismes de fissuration transverse, de délaminage et de leur couplage, permet de corriger en partie le modèle et d’améliorer la compréhension du rôle de ces mécanismes dans la rupture des structures. Pour l’étude de l’indentation, une campagne expérimentale complète est construite et réalisée en collaboration avec le laboratoire ACCIS de Bristol. Elle met en évidence des évolutions de l’endommagement différentes selon l’épaisseur de la plaque, principalement en terme de délaminage. Les premières simulations réalisées montrent une capacité relative du modèle à reproduire l’apparition des dégradations mais aussi des limites numériques du code éléments finis utilisés. / In order to provide reliable numerical simulations for the design of composite structures, both accurate, physically based material models and high performance numerical codes are necessary. The aim of this thesis is to validate one of these models: the LMT damage mesomodel for laminated composites. A new validation process, based on the evolution of the degradation mechanisms in the material up to failure, is defined. This approach is then applied on two chosen test cases: open-hole tensile tests and static indentation tests, focusing on the scaling effects. The first test case highlights the model capabilities to mirror the failure mode change with ply thickness: from a fiber breaking dominated failure to a delamination dominated one. Nevertheless, it also underlines one of the model weaknesses: the bad representation of localised damage such as splits. A study of the transverse cracking, the delamination and their interaction allow to improve the capabilities of the model and to understand in depth the role of these mechanisms in the structure failure. Concerning the static indentation, a complete experimental campaign was built and performed in collaboration with the ACCIS laboratory in Bristol. It brings out different damage evolution depending on plate thickness that can be used to validate the model. The first simulations performed show that the model does not manage to mirror all the experimental observations, and underline numerical limitations of the finite elements code used.
57

The effect of R-ratio on the mode II fatigue delamination growth of unidirectional carbon/epoxy composites

Gambone, Livio R. January 1991 (has links)
An investigation of the effect of R-ratio on the mode II fatigue delamination of AS4/3501-6 carbon/epoxy composites has been undertaken. Experiments have been performed on end notched cantilever beam specimens over a wide range of R-ratios (-l ≤R ≤0.50). The measured delamination growth rate data have been correlated with the mode II values of strain energy release rate range ∆G[formula omitted]), maximum strain energy release rate (G[formula omitted]) and stress intensity factor range (∆K[formula omitted]). The growth rate is dependent on the R-ratio over the range tested. For a constant level of ∆G[formula omitted], the crack growth rate decreases with increasing R-ratio. A similar trend is observed when the data is plotted as a function of G[formula omitted]. The effect of plotting the growth rate as a function of ∆K[formula omitted] is to produce an R-ratio dependence opposite to that obtained by either the ∆G[formula omitted] or G[formula omitted] approach. For a constant level of ∆K[formula omitted], the crack growth rate increases with increasing R-ratio. Master equations which completely characterize the fatigue behaviour as a function of ∆G[formula omitted] and ∆K[formula omitted] have been derived, based on the observation that the growth rate law exponent, n and constant, A are unique functions of R-ratio. Values for n are surprisingly large and increase with increasing R-ratio whereas values for A decrease with increasing R-ratio. The effect of time-at-load has been considered in an attempt to explain the existence of the R-ratio dependence of the growth rate. The correct trend can be established for the exponent, n but not for the constant, A. Friction between the crack faces, particularly at higher R-ratios, is proposed as a possible explanation for the observed anomaly. Further evidence of a frictional mechanism operating at higher R-ratios has been discovered through a postmortem fracture surface examination. Additional fractographic observations are presented over the entire range of R-ratios tested. In regions subjected to negative R-ratio cycling, there is no evidence of the characteristic mode II hackle features. Instead, loose rounded particles of matrix material are found. An extensive amount of hackling is observed in regions subjected to low positive R-ratio cycles. The extent of hackle damage visibly decreases in areas where higher levels of R-ratio are imposed. A correlation between the general fracture surface morphology and the fatigue data provides support for the hypothesis that energy for delamination is always available in sufficient quantity, and that growth is dependent on the stresses ahead of the crack tip being sufficiently high. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
58

Vibration-based structural health monitoring of composite structures

Ullah, Israr January 2011 (has links)
Composite materials are in use in several applications, for example, aircraft structural components, because of their light weight and high strength. However the delamination which is one of the serious defects often develops and propagates due to vibration during the service of the structure. The presence of this defect warrants the design life of the structure and the safety. Hence the presence of such defect has to be detected in time to plan the remedial action well in advance. There are a number of methods in the literature for damage detection. They are either 'baseline free/reference free method' or using the data from the healthy structure for damage detection. However very limited vibration-based methods are available in the literature for delamination detection in composite structures. Many of these methods are just simulated studies without experimental validation. Grossly 2 kinds of the approaches have been suggested in the literature, one related to low frequency methods and other high frequency methods. In low frequency approaches, the change in the modal parameters, curvatures, etc. is compared with the healthy structure as the reference, however in the high frequency approaches, excitation of structures at higher modes of the order of few kHz or more needed with distributed sensors to map the deflection for identification of delamination. Use of high frequency methods imposes the limitations on the use of the conventional electromagnetic shaker and vibration sensors, whereas the low frequency methods may not be feasible for practical purpose because it often requires data from the healthy state which may not be available for old structures. Hence the objective of this research is to develop a novel reference-free method which can just use the vibration responses at a few lower modes using a conventional shaker and vibration sensors (accelerometers/laser vibrometers). It is believed that the delaminated layers will interact nonlinearly when excited externally. Hence this mechanism has been utilised in the numerical simulations and the experiments on the healthy and delaminated composite plates. Two methods have been developed here - first method can quickly identify the presence of the delamination when excited at just few lower modes and other method identify the location once the presence of the delamination is confirmed. In the first approach an averaged normalised RMS has been suggested and experimentally validated for this purpose. Latter the vibration data have then been analysed further to identify the location of delamination and its size. Initially, the measured acceleration responses from the composite plates have been differentiated twice to amplify the nonlinear interaction clearly in case of delaminated plate and then kurtosis was calculated at each measured location to identify the delamination location. The method has further been simplified by just using the harmonics in the measured responses to identify the location. The thesis presents the process of the development of the novel methods, details of analysis, observations and results.
59

Experimentation of Mode I and Mode II Fracture of Uni-Directional Composites and Finite Element Analysis of Mode I Fracture Using Cohesive Contact

Garrett, Joseph Daniel 01 September 2016 (has links)
As the use of fiber-reinforced composites has increased over the decades, so has the need to understand the complexity of their failure mechanisms as engineers seek to improve the damage tolerance of composite laminated structures. One of the most prevalent and limiting mode of failure within composite laminates is delamination, since it not only reduces a structures stiffness and strength, but can be very difficult to detect without the use of special non-destructive equipment. Industry testing organizations have utilized several fracture tests in order to characterize the fracture toughness of composite materials under different loading conditions. For this research, ASTM D5528, ASTM D7905 & 4ENF tests were performed to evaluate the fracture resistance of uni-directional pre-preg laminates; the 4ENF was used to compare its effectiveness as to ASTM D7905. Finite element methods such as the use of cohesive elements have been developed to simulate delamination within composite laminates. While there has been much work in evaluating the effectiveness of cohesive elements, very little exists within literature as to studying the success of cohesive surface contact for accurately modeling coupon level fracture testing. Cohesive contact interaction in Abaqus/Standard was used to simulate the mode I double cantilever beam (DCB) experiment of ASTM D5528. Cohesive contact was found to accurately and efficiently model DCB testing as the critical load- displacement values and steady state fracture agreed with experimental data. A parametric study was performed and found that cohesive contact was less sensitive in varying key model parameters than that commonly expected of cohesive elements.
60

Identification of Delamination Defects in CFRP Materials through Lamb Wave Responses

Bruhschwein, Taylor John January 2014 (has links)
Delamination is currently a largely undetectable form of damage in composite laminate materials. This thesis will develop a method to more easily detect delamination damage within composite materials. Using finite element analysis modeling and lab testing, a new method from interpreting the results obtained from existing structural health monitoring techniques is developed. Lamb waves were introduced and recorded through an actuator and sensors made of piezoelectric material. The data was then analyzed through a novel data reduction method using the Fast Fourier Transform (FFT). Using the data from FFT, the idea of covariance of energy change was developed. By comparing the covariance of energy change in beams with differing delamination size, thickness and depth, correlations were able to be developed. With these correlations, the severity and of damage was able to be detected.

Page generated in 0.095 seconds