Spelling suggestions: "subject:"delsbo alectric"" "subject:"delsbo delectric""
1 |
Parameter study for an energy efficient suspension for a rail vehicle prototype / Parameterstudie för ett energieffektivt fjäderdämparsystem till en spårgående fordonsprototypDanström, Ludvig January 2023 (has links)
The push for sustainability in all parts of our society has never been as big as it is currently. One project that aims to produce sustainable innovation in the railway industry is the Delsbo Electric competition where some of the world’s most energy efficient vehicles compete. A dominant design has arisen in the competition which means that competitors must seek innovative avenues of development in order to find an edge over the competition. One such avenue has been to use composite material in construction to decrease mass and therefore increase energy efficiency. The KTH Delsbo Electric team views the suspension system as one such avenue that has the potential to improve efficiency. This project is a study into the dynamics of rail vehicles and especially rail vehicle suspension systems. Using a vehicle modelled in an MBS software a parametric study is conducted with the goal to optimize the energy efficiency through an iterating process by only varying the stiffness and damping parameters for the suspension system. Through the iterating process, it became clear that some parameters are more closely linked to different parts of the vehicle behavior than others. The energy efficiency is closely linked to the stiffness in the suspension, especially in the longitudinal direction. The ride comfort was found to be very much linked to the damping parameters. This made it possible to tune the stiffness and achieve high energy efficiency and then adapt that setup to gain better ride comfort. This study also concludes that the vehicle derailment factor (L/V) is inversely linked to energy efficiency. Therefore, an energy efficient vehicle is less likely to derail. The result of this thesis is a setup of energy efficient parameters that will lay the groundwork for a project to design and manufacture a suspension system with the outlined parameters. / Strävan efter hållbarhet i alla delar av vårt samhälle har aldrig varit så stor som den är idag. Ett sådant projekt, vars syfte är att producera hållbara innovationer inom järnvägsindustrin, är Delsbo Electric-tävlingen där några av världens mest energieffektiva fordon tävlar. En dominant design har uppstått vilket betyder att konkurrenter måste hitta innovativa utvecklingsriktningar för att skapa sig ett försprång gentemot de andra. En sådan riktning har varit användningen av kompositmaterial som minskar vikt och därmed ökar energieffektiviteten. KTH Delsbo Electric-teamet ser fjäder- och dämparsystemet som en riktning med hög potential att förbättra energieffektiviteten. Detta projekt är en studie inom spårfordonsdynamik och mer specifikt inom spårfordons fjäder- och dämparsystem. Genom användningen av ett fordon modellerat i ett MBS-program utförs en parameterstudie med målet att optimera energieffektiviteten genom en iterativ process där enbart styvheten och dämpningen varieras. Under den iterativa processen blev det uppenbart att olika parametrar har större påverkan på vissa fordons beteenden än andra. Energieffektiviteten är beroende av styvheten, speciellt i den longitudinella riktningen. Åkkomforten var mycket beroende av dämpningen. På grund av detta kunde styvheten ställas in för att optimera energieffektiviteten och sedan anpassa dämpningen så att åkkomforten blev acceptabel. Denna studie kom också fram till att urspårningsfaktorn (L/V) är omvänt länkad till energieffektiviteten hos ett fordon. Ett fordon som har hög energieffektivitet har därför mindre risk för urspårning. Resultatet av denna studie är en uppsättning energieffektiva parametrar som ska lägga grunden för framtida projekt att designa och tillverka ett fjäder- och dämparsystem utifrån dessa parametrar.
|
2 |
Optimering av hjulprofil till en spårgående fordonsprototyp / Optimization of wheel profile for a rail vehicle prototypeSkagerlind, Olof, Forsling, Gabriel January 2023 (has links)
Hållbara transporter är en viktig faktor för att minska koldioxidutsläppen och bidra till en mer hållbar framtid. Den svenska järnvägen är en viktig del av infrastrukturen och transporterar dagligen hundratusentals människor och stora mängder varor. Transportsektorn förbrukar nu cirka en tredjedel av den totala energin i världen. Därför är det allt viktigare för alla transportslag, inklusive järnvägstransporter, att förbättra sin energieffektivitet och minska sina CO2-utsläpp. För att bidra till en hållbar utveckling av järnvägstransporter krävs smartare och mer innovativa lösningar än vad som finns tillgängligt idag. Denna rapport är kopplad till ett studentprojekt på KTH som syftar till att i framtiden ställa upp i tävlingen Delsbo Electric. Tävlingen går ut på att konstruera ett spårgående batteridrivet fordon med så låg energiförbrukning som möjligt. Syftet med tävlingen är bland annat att stimulera innovation inom området transportlösningar. Hjulprofilen hos ett spårfordon har stor inverkan på dess körbeteende och påverkar hjulslitage, stabilitet och kontaktspänningar. I detta arbete studeras hjulprofilen hos tåg genom en förstudie av nuvarande forskning följt av ett antal datasimuleringar i programmet Simpack. Data från simuleringarna jämförs mellan de olika hjulprofilerna och med standarder för tågindustrin. Fordonets säkerhet och komfort påverkas av hjulprofilen och dess konicitet. I rapporten jämförs olika grad konicitets inverkan på dessa genom industristandarder. Resultatet presenteras i grafer och tabeller med data från simuleringarna. Sju grader konicitet gav bäst resultat i simuleringarna för både säkerhet och komfort. / Sustainable transportation is an important factor in reducing carbon dioxide emissions and contributing to a more sustainable future. The Swedish railway is an important part of the infrastructure and transports hundreds of thousands of people and large quantities of goods every day. The transport sector today consumes about a third of the total energy in the world. Therefore, it is increasingly important for all modes of transport, including rail transport, to improve their energy efficiency and reduce their CO2 emissions. To contribute to the sustainable development of rail transport, smarter and more innovative solutions are required than what is available today. This report is connected to a student project at KTH which aims to enter the Delsbo Electric competition in the future. The purpose of the competition is to construct a track-going battery-powered vehicle with as low energy consumption as possible. The purpose of the competition is, among other things, to stimulate innovation in the field of transport solutions. The wheel profile of a tracked vehicle has a major impact on its driving behavior and affects wheel wear, stability and contact stresses. In this work, the wheel profile of trains is studied through a preliminary study of current research followed by several computer simulations in the program Simpack. The data from the simulations are compared between the different wheel profiles and with standards for the train industry. The safety and comfort of the vehicle is affected by the wheel profile and its conicity. The report compares the impact of different degrees of conicity on these through industry standards. The result is presented through graphs and tables with the data from the simulations. Seven degrees of conicity gave the best results in the simulations for both safety and comfort.
|
3 |
Design, Analysis and Implementation of a Drive System for Delsbo Electric Light Rail VehicleMarklund, Daniel, Lindh, Maria January 2022 (has links)
The aim of this project is to design and implement a drive system and a driving strategy for a lightweight, battery-driven rail vehicle partaking in the Delsbo Electric student competition. The goal of the competition is to create a vehicle which consumes as little energy as possible. A simulation model of the vehicle is developed in Simulink, based on existing hybrid car models. Different drive cycles are written in MATLAB and tested in the vehicle simulation, which calculates energy consumption, power and torque usage and other important data. This data is used to select an optimal driving strategy and dimension the drive system components. The final drive system design consists of a permanent-magnet synchronous motor powered by lead acid batteries and controlled by a microcontroller and motor driver through a user interface consisting of a control board with buttons and switches. The chosen driving strategy combines slow acceleration and constant speed in slopes with the pulse and glide strategy on flat parts of the track. The simulation shows a total energy consumption of 0.67 Wh/person and km, which is in the same order of magnitude as results from previous years, which is promising for the competition. However, the actual energy consumption can not be known until the vehicle has been built and tested. There is a lot of uncertainty around its parameters at this stage, which affects the reliability of the simulations. / Syftet med det här projektet är att designa och implementera ett drivsystem och en körstrategi för ett lättviktigt, batteridrivet rälsfordon. Fordonet ska användas i studenttävlingen Delsbo Electric. Målet med tävlingen är att bygga ett fordon som förbrukar så lite energi som möjligt. För att göra detta utvecklas en simuleringsmodell av fordonet i Simulink, baserat på redan existerande modeller av hybridbilar. Olika körprogram skrivs i MATLAB och testkörs i modellen, som beräknar energiåtgång, använd effekt och vridmoment och annan viktig data. Dessa värden används sedan för att optimera körstrategin och dimensionera drivsystemets komponenter. Det färdigdesignade drivsystemet består av en permanentmagnetiserad synkronmotor som matas från blyackumulatorer och styrs av en mikrokontroller och en driver via en kontrollpanel med knappar och switchar. Den valda körstrategin kombinerar låg acceleration och konstant hastighet i backarna med pulse-and-glide-strategin på de platta delarna av banan. Enligt simuleringarna ger den en total energiåtgång på 0.67 Wh/person-km, vilket är i samma storleksordning som tävlingsresultat från tidigare år. Detta bådar gott inför tävlingen, men det går inte att veta hur stor den faktiska energiförbrukningen kommer bli förrän fordonet är byggt och testat. Än så länge är många av dess parametrar osäkra, vilket påverkar tillförlitligheten hos simuleringarna. / Kandidatexjobb i elektroteknik 2022, KTH, Stockholm
|
Page generated in 0.0552 seconds