• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 45
  • 45
  • 11
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Shining new light on motoneurons: characterization of motoneuron dendritic spines using light microscopy and novel analytical methods

McMorland, Angus John Cathcart January 2009 (has links)
Dendritic spines are fundamental units of information processing within the nervous system, responsible for independent modulation of synaptic input to neurons. Filopodia, often morphologically indistinguishable from spines, are involved in formation of synapses during neuronal development. Despite the importance of these structures for neuronal function, no detailed study of their presence on motoneurons has yet been made. Here, the presence of spines on hypoglossal motoneurons (HMs) is described at three developmental stages: at P0–2 and P9–11, spines are present at an average density of ~0.1 spines/micron, but at P19 spine density becomes negligible. In P0–2 and P9–11, spines are nonuniformly distributed, occuring in clusters, and at lower density in the most proximal and distal regions to the soma than at intermediate regions. HM spines coincide with a decrease in cell input resistance, which reduces excitability during development. Thus one may speculate that these spines are involved in the formation of new synapses required to maintain adequate excitatory drive. A major difficulty for the study of spines is their small size, which complicates measurement using optical methods. Here, I present a novel method for reconstructing spine morphology using geometric models based on a priori knowledge of spine structure. Tests of the technique using simulated data indicate that it has a resolving capability of up to 40 nm (limited by noise). The technique has been used to measure dendritic spines on HMs, showing that these structures have necks as small as 0.22 micron. For purely passive modulation of synaptic strength, spine necks need to be <~ 0.15 micron. These data suggest that if modulation of synaptic input occurs, biochemical and/or active electrical processes are needed. The methods developed in this Thesis, which have here been applied to HMs, are generally applicable to the study of spine morphology, and its effect on synaptic processing, in all classes of neurons.
42

Shining new light on motoneurons: characterization of motoneuron dendritic spines using light microscopy and novel analytical methods

McMorland, Angus John Cathcart January 2009 (has links)
Dendritic spines are fundamental units of information processing within the nervous system, responsible for independent modulation of synaptic input to neurons. Filopodia, often morphologically indistinguishable from spines, are involved in formation of synapses during neuronal development. Despite the importance of these structures for neuronal function, no detailed study of their presence on motoneurons has yet been made. Here, the presence of spines on hypoglossal motoneurons (HMs) is described at three developmental stages: at P0–2 and P9–11, spines are present at an average density of ~0.1 spines/micron, but at P19 spine density becomes negligible. In P0–2 and P9–11, spines are nonuniformly distributed, occuring in clusters, and at lower density in the most proximal and distal regions to the soma than at intermediate regions. HM spines coincide with a decrease in cell input resistance, which reduces excitability during development. Thus one may speculate that these spines are involved in the formation of new synapses required to maintain adequate excitatory drive. A major difficulty for the study of spines is their small size, which complicates measurement using optical methods. Here, I present a novel method for reconstructing spine morphology using geometric models based on a priori knowledge of spine structure. Tests of the technique using simulated data indicate that it has a resolving capability of up to 40 nm (limited by noise). The technique has been used to measure dendritic spines on HMs, showing that these structures have necks as small as 0.22 micron. For purely passive modulation of synaptic strength, spine necks need to be <~ 0.15 micron. These data suggest that if modulation of synaptic input occurs, biochemical and/or active electrical processes are needed. The methods developed in this Thesis, which have here been applied to HMs, are generally applicable to the study of spine morphology, and its effect on synaptic processing, in all classes of neurons.
43

Shining new light on motoneurons: characterization of motoneuron dendritic spines using light microscopy and novel analytical methods

McMorland, Angus John Cathcart January 2009 (has links)
Dendritic spines are fundamental units of information processing within the nervous system, responsible for independent modulation of synaptic input to neurons. Filopodia, often morphologically indistinguishable from spines, are involved in formation of synapses during neuronal development. Despite the importance of these structures for neuronal function, no detailed study of their presence on motoneurons has yet been made. Here, the presence of spines on hypoglossal motoneurons (HMs) is described at three developmental stages: at P0–2 and P9–11, spines are present at an average density of ~0.1 spines/micron, but at P19 spine density becomes negligible. In P0–2 and P9–11, spines are nonuniformly distributed, occuring in clusters, and at lower density in the most proximal and distal regions to the soma than at intermediate regions. HM spines coincide with a decrease in cell input resistance, which reduces excitability during development. Thus one may speculate that these spines are involved in the formation of new synapses required to maintain adequate excitatory drive. A major difficulty for the study of spines is their small size, which complicates measurement using optical methods. Here, I present a novel method for reconstructing spine morphology using geometric models based on a priori knowledge of spine structure. Tests of the technique using simulated data indicate that it has a resolving capability of up to 40 nm (limited by noise). The technique has been used to measure dendritic spines on HMs, showing that these structures have necks as small as 0.22 micron. For purely passive modulation of synaptic strength, spine necks need to be <~ 0.15 micron. These data suggest that if modulation of synaptic input occurs, biochemical and/or active electrical processes are needed. The methods developed in this Thesis, which have here been applied to HMs, are generally applicable to the study of spine morphology, and its effect on synaptic processing, in all classes of neurons.
44

Nanoscale imaging of synapse morphology in the mouse neocortex in vivo by two-photon STED microscopy / Imagerie nanométrique de la morphologie synaptique dans le néocortex de souris in vivo par microscopie deux-photon STED

Ter Veer, Mirelle Jamilla Tamara 25 November 2016 (has links)
Le cerveau est un organe complexe composé de neurones et des cellules non-neuronales. La communication entre les neurones a lieu via les synapses, dont le remodelage morphologique est considéré essentiel pour le traitement et le stockage des informations dans le cerveau des mammifères. Récemment, ce point de vue neuro-centré de la fonction synaptique a évolué, en prenant également en compte les processus gliaux à proximité immédiate de la synapse. Cependant, comme leur structure est bien en deçà de la résolution spatiale de la microscopie optique conventionnelle, les progrès dans les enquêtes dans leur environnement physiologique, le cerveau intact, ont été entravés. En effet, on sait peu sur les variations nanométriques de la morphologie des épines dendritiques et l'interaction avec les processus gliaux, et, finalement, comment elles affectent la transmission synaptique in vivo. Dans cette thèse, nous cherchons à visualiser la dynamique de la nano-morphologie des épines dendritiques et les processus gliaux dans le cortex à tonneaux de souris in vivo. Nous avons donc mis en place l’imagerie super-résolution 2P-STED en temps réel, ce qui permet une haute résolution spatiale et la pénétration profonde des tissus, chez la souris anesthésiée in vivo. Nous montrons que la nano-morphologie des épines est diversifiée, variable, mais globalement stable, et que les différences dans la morphologie des épines peut avoir un effet sur leur compartimentation in vivo. En outre, la mise en œuvre de l’imagerie super-résolution en double couleur in vivo et le développement d'une approche de marquage astrocytaire, nous ont permis de fournir la caractérisation à l'échelle nanométrique des interactions neurone-glie. Ces résultats apportent un aperçu sans précédent dans la dynamique de la synapse à l'échelle nanométrique in vivo, et ouvrent la voie à une meilleure compréhension de la façon dont les réarrangements morphologiques des synapses contribuent à la physiologie du cerveau. / The brain is a complex organ consisting of neurons and non-neuronal cells. Communication between neurons takes place via synapses, whose morphological remodeling is thought to be crucial for information processing and storage in the mammalian brain. Recently, this neuro-centric view of synaptic function has evolved, also taking into account the glial processes in close vicinity of the synapse. However, as their structure is well below the spatial resolution of conventional light microscopy, progress in investigating them in a physiological environment, the intact brain, has been impeded. Indeed, little is known on the nanoscale morphological variations of dendritic spines, the interaction with glial processes, and how these affect synaptic transmission in vivo. Here, we aim to visualize the dynamic nano-morphology of dendritic spines in mouse somatosensory cortex in vivo. We implemented super-resolution 2P-STED time-lapse imaging, which allows for high spatial resolution and deep tissue penetration, in anesthetized mice, and show that the nano-morphology of spines is diverse, variable, but on average stable, and that differences in spine morphology can have an effect on spine biochemical compartmentalization in vivo. Moreover, implementation of dual color in vivo super-resolution imaging and a novel astrocytic labeling approach provided the first steps towards nanoscale characterization of neuron-glia interactions in vivo. These findings bring new insights in synapse dynamics at the nanoscale in vivo, and our methodological endeavors help pave the way for a better understanding of how nanoscale aspects of spine morphology and their dynamics might contribute to brain physiology and animal behavior.
45

MSK1 regulates homeostatic and experience-dependent synaptic plasticity

Corrêa, Sonia A.L., Hunter, C.J., Palygin, O., Wauters, S.C., Martin, K.J., McKenzie, C., McKelvey, K., Morris, R.G., Pankratov, Y., Arthur, J.S., Frenguelli, B.G. January 2012 (has links)
No / The ability of neurons to modulate synaptic strength underpins synaptic plasticity, learning and memory, and adaptation to sensory experience. Despite the importance of synaptic adaptation in directing, reinforcing, and revising the behavioral response to environmental influences, the cellular and molecular mechanisms underlying synaptic adaptation are far from clear. Brain-derived neurotrophic factor (BDNF) is a prime initiator of structural and functional synaptic adaptation. However, the signaling cascade activated by BDNF to initiate these adaptive changes has not been elucidated. We have previously shown that BDNF activates mitogen- and stress-activated kinase 1 (MSK1), which regulates gene transcription via the phosphorylation of both CREB and histone H3. Using mice with a kinase-dead knock-in mutation of MSK1, we now show that MSK1 is necessary for the upregulation of synaptic strength in response to environmental enrichment in vivo. Furthermore, neurons from MSK1 kinase-dead mice failed to show scaling of synaptic transmission in response to activity deprivation in vitro, a deficit that could be rescued by reintroduction of wild-type MSK1. We also show that MSK1 forms part of a BDNF- and MAPK-dependent signaling cascade required for homeostatic synaptic scaling, which likely resides in the ability of MSK1 to regulate cell surface GluA1 expression via the induction of Arc/Arg3.1. These results demonstrate that MSK1 is an integral part of a signaling pathway that underlies the adaptive response to synaptic and environmental experience. MSK1 may thus act as a key homeostat in the activity- and experience-dependent regulation of synaptic strength.

Page generated in 0.0382 seconds