Spelling suggestions: "subject:"denitrifiers"" "subject:"denitrifieras""
1 |
Evaluation of Digital PCR (dPCR) for the Quantification of Soil Nitrogen Turnover Bacteria in Wetland Mesocosms in Response to Season, Fertilization, and Plant Species RichnessShah, Parita Raj 11 February 2019 (has links)
Excess nutrients from nonpoint sources are an ongoing problem that is expected to worsen as population and fertilizer usage rise. Conventional centralized treatment systems are not well suited to address nonpoint source pollution. More distributed best management practices (BMPs) like constructed wetlands are a promising alternative and have been widely implemented in the US since the 1970's. Constructed wetlands are multi-functional systems that can effectively store and transform harmful contaminants using primarily natural processes. However, the removal of pollutants like nitrogen by wetlands is highly variable, likely due to a combination of factors such as plant species-specific assimilation behavior, the effects of plant communities on microbial diversity and function, and variable nitrogen inputs. In this study, the effect of plant species richness (i.e., number of plant species in a system) and seasonal nutrient loading (i.e., nitrogen fertilization) on the microbial community responsible for regulating nitrogen turnover in wetland mesocosm soils was investigated. The chip-based QuantStudio 3D digital PCR (QS3D dPCR) system was used to quantify ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), comammox, anammox, and denitrifiers. Principal component analysis (PCA) was used to identify dominant patterns in the microbial community and nitrogen species. Resampling-based analysis of variance (ANOVA) was used to assess statistical significance of any observed differences caused by nitrogen fertilization or plant species richness. Results indicated that fertilization or season, which was convolved with fertilization, was the dominant factor influencing the microbial community in the study environment (27% variance explained), as indicated by the disparate clustering of fall (fertilized) and spring (unfertilized) samples about principal component 1 (fall: negative PC1, spring: positive PC1). Because unplanted unfertilized controls sampled in November clustered within the season in which they were collected rather than with other unfertilized samples collected in May, season may have influenced microbial community shifts more than fertilization for unplanted systems. This finding should be interpreted cautiously, however, given the small number of unplanted unfertilized controls (N = 2) and the absence of similar controls in the planted systems. The most abundant bacterial groups detected in May (November) were AOB, nirK, anammox, and Nitrospira spp. NOB (AOB, anammox, Nitrospira spp. NOB, and nosZ). The effects of plant species richness were more nuanced, with greater richness significantly impacting the abundance of only a subset of bacterial groups (i.e., the nitrifying bacteria AOB, Nitrospira spp. NOB, and comammox, but not the denitrifying bacteria). Different relationships between richness and microbial abundance were observed in different seasonal nutrient loadings (i.e., interaction effects between richness and fertilization were detected for some bacterial groups). / MS / As global population continues to rise, fertilizer application is becoming more commonplace in order to meet increasing agricultural demand. Fertilizers supply nutrients like nitrogen that, in excess, can negatively affect water quality. Since conventional treatment systems are largely impractical to control such diffuse, nonpoint sources of pollution, more distributed best management practices (BMPs) like constructed wetlands are a promising alternative. Several important nitrogen transformations occur within wetlands, of which soil microbial communities have a significant influence over. For instance, nitrifying bacteria can transform ammonia into nitrate and denitrifying bacteria can transform nitrate into atmospheric nitrogen. Constructed wetlands are designed to mimic these complex, dynamic processes, and can be manipulated for more effective nitrogen pollution control. However, the removal of pollutants like nitrogen by wetlands is highly variable, likely due to a combination of factors such as plant species-specific assimilation behavior, the effects of plant communities on microbial diversity and function, and variable nitrogen inputs. In this study, the effects of plant species richness (i.e., number of plant species in a system) and seasonal nutrient loading (i.e., nitrogen fertilization) on several types of nitrifying and denitrifying bacteria in wetland mesocosm soils were investigated. Digital polymerase chain reaction (dPCR) was used to quantify bacterial abundance. Principal component analysis (PCA) was used to identify dominant patterns within the data and resampling-based analysis of variance (ANOVA) was used to assess statistical significance of any observed differences caused by fertilization, season, and/or plant species richness. Results indicated that fertilization or season, which was convolved with fertilization, wasthe dominant factor influencing the microbial community in the study environment. The effects of plant species richness were more nuanced, with greater richness significantly impacting the abundance of only a subset of bacterial groups (i.e., the nitrifying bacteria AOB, Nitrospira spp. NOB, and comammox, but not the denitrifying bacteria).
|
2 |
Stratégie végétale d’inhibition biologique de la dénitrification (BDI) : rôle dans l’amélioration de la croissance et de la nutrition des plantes / Biological Denitrification Inhibition (BDI) in the field : a plant strategy to improve plant nutrition and growthGalland, William 18 October 2019 (has links)
Pour répondre aux besoins des populations humaines, l'agriculture est de plus en plus intensive, utilisant un très grand nombre d'engrais azotés pour augmenter les rendements. Ces engrais sont utilisés parce que l'azote est l'un des facteurs les plus important et limitant pour la croissance des plantes. L’azote sous forme de nitrate est soumis à des problématiques de pollutions pouvant affecter l’environnement ainsi que la santé humaine. Les défis de l'agriculture de demain sont donc de faire face à une population toujours plus nombreuse, tout en limitant l'impact sur notre environnement. C’est pour cela que la recherche et l’agriculture se questionnent de plus en plus sur l’utilisation d’autres produits comme les biostimulants ou des inhibiteurs, afin de limiter les intrants tout en conservant un taux de productivité viable. Une solution consisterait à agir sur les microorganismes du sol liés au cycle de l’azote afin de limiter les pertes des agrosystèmes en azote via le dégagement de gaz à effet de serre (N2O), de lessivage ou/et de volatilisation. En effet, dans les sols, le nitrate est également utilisé par les bactéries dites dénitrifiantes qui le réduisent en N2O (gaz à effet de serre) et N2, représentant alors une perte d’azote pour les cultures et une augmentation de la pollution atmosphérique. Par conséquent, les plantes sont en compétition directe avec ces bactéries pour l'assimilation du nitrate. Récemment, l’équipe encadrante de cette thèse a mis en évidence une stratégie développée par certaines plantes consistant en la production de métabolites secondaires : les procyanidines, qui inhibent la dénitrification des communautés microbiennes du sol. Les procyanidines ont la capacité d’inhiber, chez les bactéries dénitrifiantes, la première étape de la dénitrification transformant le nitrate en nitrite et ainsi d’empêcher l’utilisation du nitrate, sans toutefois exercer un effet antibactérien. Cette stratégie permet de conserver par conséquent le nitrate dans le sol, celui-ci pouvant alors être utilisé par les plantes pour leur nutrition et leur croissance. L’objectif principal de cette thèse a été d’évaluer l’effet de l’application de procyanidines exogènes à plusieurs concentrations en champs sur un modèle de plante d’intérêt économique, la laitue, ainsi que sur différents types de sols. Ces effets ont également été testés sur un autre modèle d’intérêt économique consommatrice d’azote, le céleri. Au cours de ces expérimentations, des mesures ont été effectuées sur (i) l’activité microbienne de dénitrification, (ii) les traits végétaux en lien avec la croissance et (iii) l’abondance des communautés bactériennes dénitrifiantes. Nos résultats montrent une induction d'un BDI en champs, une conservation du nitrate induisant à son tour une amélioration de la croissance des végétaux et une contre sélection par la plante des dénitrifiants. L’autre point abordé, plutôt fondamental mais qui a moins abouti faute de temps, consistait à mettre en évidence via l’utilisation de mutants d’Arabidopsis thaliana affectés dans la production des procyanidines ou surproduisant les procyanidines, un retour vers la plante de l’azote détourné suite au BDI / To meet the needs of human populations, agriculture is increasingly intensive, using a very large number of nitrogen fertilizers to increase yields. These fertilizers are used because nitrogen is one of the most important and limiting factors for plant growth. Nitrogen in the form of nitrate is subject to pollution problems that can affect the environment and human health. The challenges for tomorrow's agriculture are therefore to face an ever-increasing population, while limiting the impact on our environment. This is why research and agriculture are increasingly questioning the use of other products such as biostimulants or inhibitors, in order to limit inputs while maintaining a viable productivity rate. One solution would be to act on soil microorganisms linked to the nitrogen cycle in order to limit nitrogen losses from agrosystems through greenhouse gas (N2O) emissions, leaching and/or volatilization. Indeed, in soils, nitrate is also used by so-called denitrifying bacteria, which reduce it to N2O (greenhouse gases) and N2, representing a loss of nitrogen for crops and an increase in air pollution. As a result, plants compete directly with these bacteria for the assimilation of nitrate. Recently, the supervising team of this thesis has highlighted a strategy developed by some plants consisting of the production of secondary metabolites: procyanidins, which inhibit the denitrification of soil microbial communities. Procyanidins have the ability to inhibit the first step of denitrification in denitrifying bacteria, transforming nitrate into nitrite and thus preventing the use of nitrate, without however exerting an antibacterial effect. This strategy therefore preserves the nitrate in the soil, which can then be used by plants for their nutrition and growth. The main objective of this thesis was to evaluate the effect of the application of exogenous procyanidins at several field concentrations on a plant model of economic interest, lettuce, as well as on different soil types. These effects have also been tested on another model of economic interest that consumes nitrogen, celery. During these experiments, measurements were made on (i) microbial denitrification activity, (ii) plant traits related to growth and (iii) the abundance of denitrifying bacterial communities. Our results show an induction of a BDI in the field, a conservation of nitrate inducing in turn an improvement in plant growth and a counter-selection by the plant of denitrifiers. The other point addressed, which was rather fundamental but less successful due to a lack of time, was to highlight, via the use of Arabidopsis thaliana mutants affected in the production of procyanidins or overproducing procyanidins, a return to the plant of nitrogen diverted following the BDI
|
3 |
Influência da cobertura vegetal nas comunidades de bactérias em Terra Preta de Índio na Amazônia Central brasileira / Effects of vegetation cover on bacterial communities of Amazonian Dark Earth in Central Brazilian AmazonLima, Amanda Barbosa 20 March 2012 (has links)
As Terras Pretas de Índio (TPIs) na Amazônia Brasileira são altamente férteis e o seu conteúdo químico parece não exaurir mesmo em condições de floresta tropical. Por essa razão, são frequentemente procuradas pelas populações locais para o cultivo de subsistência. A importância das comunidades microbianas tem aumentado o interesse em compreender a relação entre o uso da terra, as comunidades de plantas, os micro-organismos e os processos do ecossistema. Portanto, o objetivo principal desta pesquisa foi investigar as comunidades bacterianas sob a influência da cobertura vegetal em sistemas de uso da terra (floresta secundária e plantio de mandioca) e na rizosfera de plantas leguminonas nativas em comunidades de bactéria das TPIs. Além disso, investigou-se também as bactérias desnitrificantes nesses solos. A área de estudo está localizada na Estação Experimental do Caldeirão, pertencente à Embrapa Amazônia Ocidental, no município de Iranduba-AM. A funcionalidade da comunidade bacteriana foi determinada pela Análise de Perfil Fisiológico da Comunidade Microbiana (CLPP), a estrutura da comunidade bacteriana foi acessada por Polimorfismo do Tamanho do Fragmento de Restrição Terminal (T-RFLP), a composição e distribuição das comunidades bacterianas foram determinadas por sequenciamento em larga escala (pirosequenciamento), e para quantificar as bactérias desnitrificantes foi utilizada a técnica de PCR quantitativa (qPCR). Os estudos foram realizados no laboratório de Biologia Celular e Molecular (CENA / USP) e no departamento de Biogeoquímica (Max Planck Institute for Terrestrial Microbiology). A análise de T-RFLP mostrou que o uso da terra e a sazonalidade afetaram as comunidades bacterianas na TPI, e mostrou também um claro efeito da rizosfera nas comunidades bacterianas. CLPP demonstrou que a atividade funcional da TPI não foi afetada pela sazonalidade. Além disso, a tecnologia de pirosequenciamento foi uma ferramenta importante para diferenciar filotipos raros. Diferenças distintas de alguns filos bacterianos da rizosfera foram observadas, indicando que a zona de raiz contribui para moldar essas comunidades. A abundância relativa do gene nirK não foi afetada pelo uso da terra nos dois tipos de solos. Alterações na estrutura das comunidades dos genes nirK e nosZ foram observadas em ambos os tipos de solos. As comunidades desnitrificantes na TPI pareceram ser mais influenciadas pelo uso da terra do que pela sazonalidade, e ACH foi mais influenciada pelas variações de sazonalidade. / Amazonian Dark Earths (ADEs) in the Brazilian Amazon are highly fertile and its chemical content seems not to get depleted even under tropical humid conditions. For this reason, these soils are frequently searched by local population for subsistence farming. The importance of microbial communities has grown the interest in understanding the relationship between land use, plant communities, microorganisms, and ecosystem processes. Therefore, the main objective of this research was to investigate the effect of vegetation cover in land use systems (secondary forest and cassava plantation) and rhizosphere of native leguminous plants on bacterial communities of ADEs. Furthermore, it was also aimed to investigate denitrifying bacteria in these soils. The study area is located at the Experimental Station of Caldeirão, belonging to Embrapa Amazônia Ocidental, Iranduba, AM. The bacterial community function was determined by Community Level Physiological Profile (CLPP), the bacterial community structure was assessed by Terminal Restriction Fragment Length Polymorphism (T-RFLP), the bacterial community composition and distribution by high-throughput sequencing (pyrosequencing), and the quantification of denitrifier bacteria by Quantitative PCR (qPCR). The studies were performed in the Laboratory of Cell and Molecular Biology (CENA/USP) and the Deparment of Biogeochemistry (Max Planck Institute for Terrestrial Microbiology). T-RFLP analysis showed that land use and seasonality affected bacterial communities in ADE, and also showed a clear rhizosphere effect on bacterial communities. CLPP have shown that ADE functional activity was not affected by seasonality. Furthermore, pyrosequencing technology was an important tool to differentiate rare phylotypes. Distinct differences of some rhizosphere bacterial phyla were also observed, indicating that the root zone contributed to shape these communities. The relative abundance of nirK gene was not affected by land use in both studied soils. Alterations in the community structure of nirK and nosZ genes were observed for both soils. ADE denitrifying communities seemed to be more affected by land use than seasonality, and ACH was more influenced by seasonal variations.
|
4 |
Influência da cobertura vegetal nas comunidades de bactérias em Terra Preta de Índio na Amazônia Central brasileira / Effects of vegetation cover on bacterial communities of Amazonian Dark Earth in Central Brazilian AmazonAmanda Barbosa Lima 20 March 2012 (has links)
As Terras Pretas de Índio (TPIs) na Amazônia Brasileira são altamente férteis e o seu conteúdo químico parece não exaurir mesmo em condições de floresta tropical. Por essa razão, são frequentemente procuradas pelas populações locais para o cultivo de subsistência. A importância das comunidades microbianas tem aumentado o interesse em compreender a relação entre o uso da terra, as comunidades de plantas, os micro-organismos e os processos do ecossistema. Portanto, o objetivo principal desta pesquisa foi investigar as comunidades bacterianas sob a influência da cobertura vegetal em sistemas de uso da terra (floresta secundária e plantio de mandioca) e na rizosfera de plantas leguminonas nativas em comunidades de bactéria das TPIs. Além disso, investigou-se também as bactérias desnitrificantes nesses solos. A área de estudo está localizada na Estação Experimental do Caldeirão, pertencente à Embrapa Amazônia Ocidental, no município de Iranduba-AM. A funcionalidade da comunidade bacteriana foi determinada pela Análise de Perfil Fisiológico da Comunidade Microbiana (CLPP), a estrutura da comunidade bacteriana foi acessada por Polimorfismo do Tamanho do Fragmento de Restrição Terminal (T-RFLP), a composição e distribuição das comunidades bacterianas foram determinadas por sequenciamento em larga escala (pirosequenciamento), e para quantificar as bactérias desnitrificantes foi utilizada a técnica de PCR quantitativa (qPCR). Os estudos foram realizados no laboratório de Biologia Celular e Molecular (CENA / USP) e no departamento de Biogeoquímica (Max Planck Institute for Terrestrial Microbiology). A análise de T-RFLP mostrou que o uso da terra e a sazonalidade afetaram as comunidades bacterianas na TPI, e mostrou também um claro efeito da rizosfera nas comunidades bacterianas. CLPP demonstrou que a atividade funcional da TPI não foi afetada pela sazonalidade. Além disso, a tecnologia de pirosequenciamento foi uma ferramenta importante para diferenciar filotipos raros. Diferenças distintas de alguns filos bacterianos da rizosfera foram observadas, indicando que a zona de raiz contribui para moldar essas comunidades. A abundância relativa do gene nirK não foi afetada pelo uso da terra nos dois tipos de solos. Alterações na estrutura das comunidades dos genes nirK e nosZ foram observadas em ambos os tipos de solos. As comunidades desnitrificantes na TPI pareceram ser mais influenciadas pelo uso da terra do que pela sazonalidade, e ACH foi mais influenciada pelas variações de sazonalidade. / Amazonian Dark Earths (ADEs) in the Brazilian Amazon are highly fertile and its chemical content seems not to get depleted even under tropical humid conditions. For this reason, these soils are frequently searched by local population for subsistence farming. The importance of microbial communities has grown the interest in understanding the relationship between land use, plant communities, microorganisms, and ecosystem processes. Therefore, the main objective of this research was to investigate the effect of vegetation cover in land use systems (secondary forest and cassava plantation) and rhizosphere of native leguminous plants on bacterial communities of ADEs. Furthermore, it was also aimed to investigate denitrifying bacteria in these soils. The study area is located at the Experimental Station of Caldeirão, belonging to Embrapa Amazônia Ocidental, Iranduba, AM. The bacterial community function was determined by Community Level Physiological Profile (CLPP), the bacterial community structure was assessed by Terminal Restriction Fragment Length Polymorphism (T-RFLP), the bacterial community composition and distribution by high-throughput sequencing (pyrosequencing), and the quantification of denitrifier bacteria by Quantitative PCR (qPCR). The studies were performed in the Laboratory of Cell and Molecular Biology (CENA/USP) and the Deparment of Biogeochemistry (Max Planck Institute for Terrestrial Microbiology). T-RFLP analysis showed that land use and seasonality affected bacterial communities in ADE, and also showed a clear rhizosphere effect on bacterial communities. CLPP have shown that ADE functional activity was not affected by seasonality. Furthermore, pyrosequencing technology was an important tool to differentiate rare phylotypes. Distinct differences of some rhizosphere bacterial phyla were also observed, indicating that the root zone contributed to shape these communities. The relative abundance of nirK gene was not affected by land use in both studied soils. Alterations in the community structure of nirK and nosZ genes were observed for both soils. ADE denitrifying communities seemed to be more affected by land use than seasonality, and ACH was more influenced by seasonal variations.
|
5 |
Treatment of mature urban landfill leachates by anammox processRuscalleda Beylier, Maël 17 February 2012 (has links)
This thesis results from the collaborative projects between the LEQUIA-UdG group and Cespa (a company in charge of several landfill sites in Spain). The aim of the work was the development of a suitable alternative treatment for nitrogen removal from mature landfill leachates. The thesis presents the application of the anammox (anaerobic ammonium oxidation process) process to treat ammonium rich leachates as the second step of the PANAMMOX® process. The work deals with preliminary studies about the characteristics of the anammox process in a SBR, with special focus on the response of the biomass to nitrite exposure. The application of the anammox process with leachate was first studied in a lab-scale reactor, to test the effect of the leachate matrix on anammox biomass and its progressive adaptation. Finally, a start-up strategy is developed and applied for the successful start-up of a 400L anammox SBR in less than 6 months. / Aquesta tesi és fruit de la col•laboració entre el grup LEQUIA-UdG i Cespa. L'objectiu del treball va ser el desenvolupament d'un tractament alternatiu per a l'eliminació biològica de nitrogen dels lixiviats madurs d'abocador. La tesi presenta l'aplicació del procés anammox (anaerobic ammonium oxidation) per tractar elevades càrregues de nitrogen en el segon pas del procés PANAMMOX ®. El treball inclou estudis preliminars sobre les característiques del procés de anammox en un SBR, amb especial atenció a la resposta de la biomassa a l'exposició de nitrit. L'aplicació del procés anammox amb lixiviat es va estudiar inicialment en un reactor a escala de laboratori, per provar l'efecte de la matriu del lixiviat sobre la biomassa anammox i la seva adaptació progressiva. Finalment, es va desenvolupar una estratègia de posada en marxa que va ser aplicada amb èxit per a la posada en marxa d'un SBR anammox de 400L en menys de 6 mesos.
|
6 |
Bacterial diversity and denitrifier communities in arable soilsCoyotzi Alcaraz, Sara Victoria January 2014 (has links)
Agricultural management is essential for achieving optimum crop production and maintaining soil quality. Soil microorganisms are responsible for nutrient cycling and are an important consideration for effective soil management. The overall goal of the present research was to better understand microbial communities in agricultural soils as they relate to soil management practices. For this, we evaluated the differential impact of two contrasting drainage practices on microbial community composition and characterized active denitrifiers from selected agricultural sites.
Field drainage is important for crop growth in arable soils. Controlled and uncontrolled tile drainage practices maintain water in the field or fully drain it, respectively. Because soil water content influences nutrient concentration, moisture, and oxygen availability, the effects of these two disparate practices on microbial community composition was compared in paired fields that had diverse land management histories. Libraries of the 16S rRNA gene were generated from DNA from 168 soil samples collected from eight fields during the 2012 growing season. Paired-end sequencing using next-generation sequencing was followed by read assembly and multivariate statistical analyses. Results showed that drainage practice exerted no measureable effect on the bacterial communities. However, bacterial communities were impacted by plant cultivar and applied fertilizer, in addition to sampled soil depth. Indicator species were only recovered for depth; plant cultivar or applied fertilizer type had no strong and specific indicator species. Among indicator species for soil depth (30-90 cm) were Chloroflexi (Anaerolineae), Betaproteobacteria (Janthinobacterium, Herminiimonas, Rhodoferax, Polaromonas), Deltaproteobacteria (Anaeromyxobacter, Geobacter), Alphaproteobacteria (Novosphingobium, Rhodobacter), and Actinobacteria (Promicromonospora).
Denitrification in agricultural fields transforms nitrogen applied as fertilizer, reduces crop production, and emits N2O, which is a potent greenhouse gas. Agriculture is the highest anthropogenic source of N2O, which underlines the importance of understanding the microbiology of denitrification for reducing greenhouse gas emissions by altered management practices. Existing denitrifier probes and primers are biased due to their development based mostly on sequence information from cultured denitrifiers. To circumvent this limitation, this study investigated active and uncultivated denitrifiers from two agricultural sites in Ottawa, Ontario. Using DNA stable-isotope probing, we enriched nucleic acids from active soil denitrifiers by exposing intact replicate soil cores to NO3- and 13C6-glucose under anoxic conditions using flow-through reactors, with parallel native substrate controls. Spectrophotometric chemistry assays and gas chromatography confirmed active NO3- depletion and N2O production, respectively. Duplicate flow-through reactors were sacrificed after one and four week incubation periods to assess temporal changes due to food web dynamics. Soil DNA was extracted and processed by density gradient ultracentrifugation, followed by fractionation to separate DNA contributed by active denitrifiers (i.e., “heavy” DNA) from that of the background community (i.e., “light” DNA). Light and heavy DNA samples were analyzed by paired-end sequencing of 16S rRNA genes using next-generation sequencing. Multivariate statistics of assembled 16S rRNA genes confirmed unique taxonomic representation in heavy fractions from flow-through reactors fed 13C6-glucose, which exceeded any site-specific or temporal shifts in putative denitrifiers. Based on high relative abundance in heavy DNA, labelled taxa affiliated with the Betaproteobacteria (71%; Janthinobacterium, Acidovorax, Azoarcus, Dechloromonas), Alphaproteobacteria (8%; Rhizobium), Gammaproteobacteria (4%; Pseudomonas), and Actinobacteria (4%; Streptomycetaceae). Metagenomic DNA from the original soil and recovered heavy fractions were subjected to next-generation sequencing and the results demonstrated enrichment of denitrification genes with taxonomic affiliations to Brucella, Ralstonia, and Chromobacterium in heavy fractions of flow-through reactors fed 13C6-glucose. The vast majority of heavy-DNA-associated nitrite-reductase reads annotated to the copper-containing form (nirK), rather than the heme-containing enzyme (nirS). Analysis of recovered nirK genes demonstrated low sequence identity across common primer-binding sites used for the detection and quantification of soil denitrifiers, indicating that these active denitrifiers would not have been detected in molecular surveys of these same soils.
|
7 |
Charakterisierung der Diversität von Mikroorganismen im Nationalpark “Unteres Odertal”Scheer, Maria 10 January 2011 (has links) (PDF)
Gewässersedimente stellen für den Stoffkreislauf ein wichtiges Ökosystem dar. Durch die Stoffwechselleistungen einer komplexen mikrobiellen Lebensgemeinschaft wird sowohl das Sediment selbst, sein Interstitialwasser, das überstehende Freiwasser als auch die Atmosphäre und die darin lebenden Mikro- und Makroorganismen beeinflusst. Die grundlegenden chemischen Prozesse im Sediment sind bereits gut untersucht. Auch sind die mikrobiellen Großgruppen im Sediment bekannt. Im Hinblick auf die Diversität der Mikroorganismen, insbesondere in Süßwassersedimenten, gibt es noch Forschungsbedarf.
Das Auengebiet des Nationalparks „Unteres Odertal“ stellt durch seine jährlich kontrollierten Flutungen ein interessantes und wegen seiner Vielfalt verschiedenartiger Gewässertypen einen idealen Ort zur Untersuchung mikrobieller Biozönosen in Gewässersedimenten dar.
Ziel dieser Arbeit war es, eine erste Charakterisierung der mikrobiellen Biozönose in den Gewässersedimenten des Auennationalparks „Unteres Odertal“ durchzuführen und mit den Ergebnissen der Talsperre Saidenbach und der Elbaue bei Dornburg zu vergleichen. Hierfür kam ein breites Spektrum an Methoden zum Einsatz, das klassische mikrobiologische Methoden und molekularbiologische Techniken umfasste. Die Analysen sollten dabei über mehrere Jahre hinweg erfolgen, um die Variabilität der mikrobiellen Populationen in Abhängigkeit von sich ändernden Umweltparametern zu erfassen.
Die Charakterisierung der Umweltparameter erfolgte durch Messungen chemisch-physikalischer Parameter im Freiwasser, Sediment und seinem Interstitialwasser. Die untersuchten Probenahmestellen unterschieden sich in ihren chemischen Profilen. Damit waren Unterschiede in der mikrobiellen Zusammensetzung dieser Probenahmestellen zu erwarten.
Die Identifizierung und Quantifizierung der Prokaryoten mittels CARD FISH wies auf eine hohe Abundanz von Alpha- und Beta-Proteobakterien sowie Bacteroidetes, Planctomycetes, Verrucomicrobia und Chloroflexi in den Proben des Odertals hin. Die Proben Dornburgs wurden von Planctomyceten und die Proben des Haselbachs von Alpha-Proteobakterien oder Verrucomicrobien dominiert. Obwohl die Hybridisierbarkeit der Proben gut war, wurde mit den angewendeten Sonden in der Summe weniger als 50 % der Gesamtzellzahl erfasst.
Die Anwendung der ARISA Methode zeigte strukturelle Unterschiede zwischen den untersuchten Proben in Abhängigkeit von der Sedimenttiefe und dem Probenahmemonat. Die größte Ähnlichkeit besaßen die Biozönosen des Anglerteichs und des Bogengrabens. Ein Einfluss der Flutung auf die Zusammensetzung der mikrobiellen Biozönose konnte deutlich gezeigt werden.
Die Identifikation der Eubakterien in den Proben des Odertals durch die Erstellung von 16S rDNA Eubakterien Klonbanken ergab eine Dominanz der Beta-Proteobakterien und Bacteroidetes und wies auf die Bedeutung der Delta-Proteobakterien hin. Die eubakterielle Lebensgemeinschaft im Haselbach wurde von Alpha-Proteobakterien und Acidobakterien dominiert. Variabilitäten im Zusammenhang mit dem Probenahmedatum und der Flutung des Odertals konnten gezeigt werden. Die größte eubakterielle Biodiversität wurde im Sediment der Oder-Zollstation (April 2007) geschätzt.
Die Anwendung der Pyrosequenzierung ergab eine hohe Biodiversität in allen Proben und bestätigte die Dominanz der Beta-Proteobakterien im Anglerteich. Im Bogengraben dominierten die Delta-Proteobakterien knapp vor den Beta-Proteobakterien. In der Oder waren neben den Beta-Proteobakterien die Bacteroidetes abundanter. Die genannten Taxa dominierten auch die Bibliotheken der Talsperre Saidenbach. Die höchste Biodiversität wurde für die Bibliothek des Bogengrabens angegeben, dessen Lebensgemeinschaft die meisten Gemeinsamkeiten mit der Bibliothek des Anglerteichs aufwies.
Sulfatreduzierende Bakterien (SRB) wurden durch die Sequenzierung von Klonbanken und die Anwendung der Fingerprintmethoden T-RFLP und DGGE charakterisiert. Die hohe Biodiversität der SRB konnte je nach erstellter Klonbank unterschiedlich gut beschrieben werden. Neben zahlreichen nicht identifizierbaren Vertretern waren Desulfobacterales und Clostridiales abundant. Die größte Diversität wurde wiederum in der Bibliothek des Bogengrabens nachgewiesen. Die Zusammensetzung der SRB in den Klonbanken variierte in Abhängigkeit der Parameter gelöster reaktiver Phosphor (SRP), organische Substanz, DOC und Nitrat. Mit T-RFLP und DGGE konnte eine sedimenttiefenabhängige Variabilität der SRB festgestellt werden, die sich zwischen den Proben Anglerteich und Bogengraben am meisten glich. Mit der DGGE erfolgte eine erste zeitabhängige Untersuchung, die deutlich verschiedene Biozönosen zwischen der Talsperre Saidenbach und den Proben des Nationalparks „Unteres Odertal“ zeigte. Das enorm hohe Bandenspektrum erschwerte die Analyse der zeitlichen Variabilität.
Die Nitrat-Stickstoffkonzentrationen waren in den Sedimenten mit zunehmender Tiefe unverändert niedrig, was sich in einer mit T-RFLP untersuchten niedrigen Diversität der Denitrifikanten wiederspiegelte, die nur wenige vertikale oder zeitliche Varianzen zeigten.
Die Anwendung von Kultivierungsversuchen ermöglichte die Isolation und eine erste Charakterisierung von Cyano- und Eisenbakterien. Insbesondere fädige Cyanobakterien der Gattungen Leptolyngbya, Nostoc und Pseudanabaena wiesen ein interessantes Sekundärmetabolitspektrum auf. Die Untersuchung erster Extrakte (Firma Cyano Biotech) wies auf biologisch aktive Substanzen hin.
Die Untersuchung hygienisch relevanter Mikroorganismen zeigte ein höheres Vorkommen coliformer Bakterien im Sediment der Oder-Zollstation als im Anglerteich oder Bogengraben.
Neben den Eubakterien wurde die Lebensgemeinschaft der Archaea durch Sequenzierung generierter Klonbanken identifiziert sowie die vertikale und temporale Variabilität ihrer Struktur untersucht (T-RFLP, DGGE). Die für aquatische Sedimente vergleichsweise hohe archaeale Diversität unterschied sich enorm zwischen den Klonbibliotheken. Die höchste Diversität wurde in der Klonbank der Probe Dornburgs festgestellt, die neben Vertretern des „Rice Clusters V“ (RC-V) überwiegend aus Crenarchaea bestand. RC-V Archaea dominierten, bis auf die Oder-Zollstation, alle generierten Bibliotheken. Methanogene Archaea waren besonders abundant in der Bibliothek der Oder-Zollstation (Methanomicrobiaceae, Methanosaetaceae) und des Haselbachs (Methanospirillaceae). Einflussnehmende Umweltfaktoren waren Sulfat (Dornburg), Nitrat (Entnahmestelle), DIC (Anglerteich), Sauerstoff (Haselbach) und Ammonium (Oder-Zollstation). Die T-RFLP Analyse zeigte die methanogenen Archaea Methanosarcinales/Methanomicrobiales (Msm) als besonders abundant an. Eine erwartete tiefenabhängige Varianz konnte mit T-RFLP gezeigt werden. Die Unterschiede zwischen den Probenahmestellen waren jedoch deutlicher und zeigten anhand der DGGE Analyse ein breiteres Msm Bandenspektrum für den Anglerteich und Bogengraben im Vergleich zur Oder-Zollstation und zum Haselbach. Die zeitabhängige Variabilität der Archaea und Msm konnte mit T-RFLP und DGGE gezeigt werden. Der Einfluss der Flutung war im Vergleich zu allen anderen Probenahmedaten nicht so ausschlaggebend wie erwartet.
Insgesamt zeigen die Ergebnisse eine hohe Biodiversität der Mikroorganismen im Nationalpark Unteres Odertal. Die Flutung hatte insbesondere auf die Eubakterien einen großen Einfluss. Zeitliche Variabilität der Zusammensetzung der Lebensgemeinschaften der Prokaryoten lässt sich im Odertal nicht mit einer Jahreszeit in Zusammenhang bringen. Hingegen sind die mikrobiellen Biozönosen im Haselbach nachweislich von den wechselnden Zirkulationsphasen beeinflusst.
Die hier verwendeten Methoden sind zur Charakterisierung mikrobieller Biozönosen in der Umweltmikrobiologie weit verbreitet. Die Anwendung der neuen Pyrosequenzierungsmethode ermöglichte trotz enormer Anzahl analysierter Sequenzen keine vollständige Erfassung der hohen Biodiversität, aber durch das Fehlen des Klonierungsschrittes wurde eine Fehlerursache in der Darstellung der realen Biozönose ausgeschlossen. Unstimmigkeiten in den Ergebnissen der verschiedenen Experimente beruhen meist auf methodischen Limitationen. Die DNA Isolationsmethode, die Vorauswahl von Primern, die bevorzugte Amplifikation, die allen PCR-basierten Methoden zu Grunde liegen, verschieben die reale Darstellung der Struktur einer Biozönose. Die fehlende Aussagekraft über die Aktivität der Mikroorganismen durch DNA basierte Analysen kann durch die Beobachtung der zeitlichen Änderungen ihrer Abundanz reduziert werden. Erste einflussnehmende Umweltparameter konnten ermittelt werden. Zusätzliche Analysen weiterer Elektronenakzeptoren über einen längeren Zeitraum sind jedoch nötig, um eine hinreichend sichere Aussage treffen zu können.
|
8 |
Charakterisierung der Diversität von Mikroorganismen im Nationalpark “Unteres Odertal”Scheer, Maria 21 December 2010 (has links)
Gewässersedimente stellen für den Stoffkreislauf ein wichtiges Ökosystem dar. Durch die Stoffwechselleistungen einer komplexen mikrobiellen Lebensgemeinschaft wird sowohl das Sediment selbst, sein Interstitialwasser, das überstehende Freiwasser als auch die Atmosphäre und die darin lebenden Mikro- und Makroorganismen beeinflusst. Die grundlegenden chemischen Prozesse im Sediment sind bereits gut untersucht. Auch sind die mikrobiellen Großgruppen im Sediment bekannt. Im Hinblick auf die Diversität der Mikroorganismen, insbesondere in Süßwassersedimenten, gibt es noch Forschungsbedarf.
Das Auengebiet des Nationalparks „Unteres Odertal“ stellt durch seine jährlich kontrollierten Flutungen ein interessantes und wegen seiner Vielfalt verschiedenartiger Gewässertypen einen idealen Ort zur Untersuchung mikrobieller Biozönosen in Gewässersedimenten dar.
Ziel dieser Arbeit war es, eine erste Charakterisierung der mikrobiellen Biozönose in den Gewässersedimenten des Auennationalparks „Unteres Odertal“ durchzuführen und mit den Ergebnissen der Talsperre Saidenbach und der Elbaue bei Dornburg zu vergleichen. Hierfür kam ein breites Spektrum an Methoden zum Einsatz, das klassische mikrobiologische Methoden und molekularbiologische Techniken umfasste. Die Analysen sollten dabei über mehrere Jahre hinweg erfolgen, um die Variabilität der mikrobiellen Populationen in Abhängigkeit von sich ändernden Umweltparametern zu erfassen.
Die Charakterisierung der Umweltparameter erfolgte durch Messungen chemisch-physikalischer Parameter im Freiwasser, Sediment und seinem Interstitialwasser. Die untersuchten Probenahmestellen unterschieden sich in ihren chemischen Profilen. Damit waren Unterschiede in der mikrobiellen Zusammensetzung dieser Probenahmestellen zu erwarten.
Die Identifizierung und Quantifizierung der Prokaryoten mittels CARD FISH wies auf eine hohe Abundanz von Alpha- und Beta-Proteobakterien sowie Bacteroidetes, Planctomycetes, Verrucomicrobia und Chloroflexi in den Proben des Odertals hin. Die Proben Dornburgs wurden von Planctomyceten und die Proben des Haselbachs von Alpha-Proteobakterien oder Verrucomicrobien dominiert. Obwohl die Hybridisierbarkeit der Proben gut war, wurde mit den angewendeten Sonden in der Summe weniger als 50 % der Gesamtzellzahl erfasst.
Die Anwendung der ARISA Methode zeigte strukturelle Unterschiede zwischen den untersuchten Proben in Abhängigkeit von der Sedimenttiefe und dem Probenahmemonat. Die größte Ähnlichkeit besaßen die Biozönosen des Anglerteichs und des Bogengrabens. Ein Einfluss der Flutung auf die Zusammensetzung der mikrobiellen Biozönose konnte deutlich gezeigt werden.
Die Identifikation der Eubakterien in den Proben des Odertals durch die Erstellung von 16S rDNA Eubakterien Klonbanken ergab eine Dominanz der Beta-Proteobakterien und Bacteroidetes und wies auf die Bedeutung der Delta-Proteobakterien hin. Die eubakterielle Lebensgemeinschaft im Haselbach wurde von Alpha-Proteobakterien und Acidobakterien dominiert. Variabilitäten im Zusammenhang mit dem Probenahmedatum und der Flutung des Odertals konnten gezeigt werden. Die größte eubakterielle Biodiversität wurde im Sediment der Oder-Zollstation (April 2007) geschätzt.
Die Anwendung der Pyrosequenzierung ergab eine hohe Biodiversität in allen Proben und bestätigte die Dominanz der Beta-Proteobakterien im Anglerteich. Im Bogengraben dominierten die Delta-Proteobakterien knapp vor den Beta-Proteobakterien. In der Oder waren neben den Beta-Proteobakterien die Bacteroidetes abundanter. Die genannten Taxa dominierten auch die Bibliotheken der Talsperre Saidenbach. Die höchste Biodiversität wurde für die Bibliothek des Bogengrabens angegeben, dessen Lebensgemeinschaft die meisten Gemeinsamkeiten mit der Bibliothek des Anglerteichs aufwies.
Sulfatreduzierende Bakterien (SRB) wurden durch die Sequenzierung von Klonbanken und die Anwendung der Fingerprintmethoden T-RFLP und DGGE charakterisiert. Die hohe Biodiversität der SRB konnte je nach erstellter Klonbank unterschiedlich gut beschrieben werden. Neben zahlreichen nicht identifizierbaren Vertretern waren Desulfobacterales und Clostridiales abundant. Die größte Diversität wurde wiederum in der Bibliothek des Bogengrabens nachgewiesen. Die Zusammensetzung der SRB in den Klonbanken variierte in Abhängigkeit der Parameter gelöster reaktiver Phosphor (SRP), organische Substanz, DOC und Nitrat. Mit T-RFLP und DGGE konnte eine sedimenttiefenabhängige Variabilität der SRB festgestellt werden, die sich zwischen den Proben Anglerteich und Bogengraben am meisten glich. Mit der DGGE erfolgte eine erste zeitabhängige Untersuchung, die deutlich verschiedene Biozönosen zwischen der Talsperre Saidenbach und den Proben des Nationalparks „Unteres Odertal“ zeigte. Das enorm hohe Bandenspektrum erschwerte die Analyse der zeitlichen Variabilität.
Die Nitrat-Stickstoffkonzentrationen waren in den Sedimenten mit zunehmender Tiefe unverändert niedrig, was sich in einer mit T-RFLP untersuchten niedrigen Diversität der Denitrifikanten wiederspiegelte, die nur wenige vertikale oder zeitliche Varianzen zeigten.
Die Anwendung von Kultivierungsversuchen ermöglichte die Isolation und eine erste Charakterisierung von Cyano- und Eisenbakterien. Insbesondere fädige Cyanobakterien der Gattungen Leptolyngbya, Nostoc und Pseudanabaena wiesen ein interessantes Sekundärmetabolitspektrum auf. Die Untersuchung erster Extrakte (Firma Cyano Biotech) wies auf biologisch aktive Substanzen hin.
Die Untersuchung hygienisch relevanter Mikroorganismen zeigte ein höheres Vorkommen coliformer Bakterien im Sediment der Oder-Zollstation als im Anglerteich oder Bogengraben.
Neben den Eubakterien wurde die Lebensgemeinschaft der Archaea durch Sequenzierung generierter Klonbanken identifiziert sowie die vertikale und temporale Variabilität ihrer Struktur untersucht (T-RFLP, DGGE). Die für aquatische Sedimente vergleichsweise hohe archaeale Diversität unterschied sich enorm zwischen den Klonbibliotheken. Die höchste Diversität wurde in der Klonbank der Probe Dornburgs festgestellt, die neben Vertretern des „Rice Clusters V“ (RC-V) überwiegend aus Crenarchaea bestand. RC-V Archaea dominierten, bis auf die Oder-Zollstation, alle generierten Bibliotheken. Methanogene Archaea waren besonders abundant in der Bibliothek der Oder-Zollstation (Methanomicrobiaceae, Methanosaetaceae) und des Haselbachs (Methanospirillaceae). Einflussnehmende Umweltfaktoren waren Sulfat (Dornburg), Nitrat (Entnahmestelle), DIC (Anglerteich), Sauerstoff (Haselbach) und Ammonium (Oder-Zollstation). Die T-RFLP Analyse zeigte die methanogenen Archaea Methanosarcinales/Methanomicrobiales (Msm) als besonders abundant an. Eine erwartete tiefenabhängige Varianz konnte mit T-RFLP gezeigt werden. Die Unterschiede zwischen den Probenahmestellen waren jedoch deutlicher und zeigten anhand der DGGE Analyse ein breiteres Msm Bandenspektrum für den Anglerteich und Bogengraben im Vergleich zur Oder-Zollstation und zum Haselbach. Die zeitabhängige Variabilität der Archaea und Msm konnte mit T-RFLP und DGGE gezeigt werden. Der Einfluss der Flutung war im Vergleich zu allen anderen Probenahmedaten nicht so ausschlaggebend wie erwartet.
Insgesamt zeigen die Ergebnisse eine hohe Biodiversität der Mikroorganismen im Nationalpark Unteres Odertal. Die Flutung hatte insbesondere auf die Eubakterien einen großen Einfluss. Zeitliche Variabilität der Zusammensetzung der Lebensgemeinschaften der Prokaryoten lässt sich im Odertal nicht mit einer Jahreszeit in Zusammenhang bringen. Hingegen sind die mikrobiellen Biozönosen im Haselbach nachweislich von den wechselnden Zirkulationsphasen beeinflusst.
Die hier verwendeten Methoden sind zur Charakterisierung mikrobieller Biozönosen in der Umweltmikrobiologie weit verbreitet. Die Anwendung der neuen Pyrosequenzierungsmethode ermöglichte trotz enormer Anzahl analysierter Sequenzen keine vollständige Erfassung der hohen Biodiversität, aber durch das Fehlen des Klonierungsschrittes wurde eine Fehlerursache in der Darstellung der realen Biozönose ausgeschlossen. Unstimmigkeiten in den Ergebnissen der verschiedenen Experimente beruhen meist auf methodischen Limitationen. Die DNA Isolationsmethode, die Vorauswahl von Primern, die bevorzugte Amplifikation, die allen PCR-basierten Methoden zu Grunde liegen, verschieben die reale Darstellung der Struktur einer Biozönose. Die fehlende Aussagekraft über die Aktivität der Mikroorganismen durch DNA basierte Analysen kann durch die Beobachtung der zeitlichen Änderungen ihrer Abundanz reduziert werden. Erste einflussnehmende Umweltparameter konnten ermittelt werden. Zusätzliche Analysen weiterer Elektronenakzeptoren über einen längeren Zeitraum sind jedoch nötig, um eine hinreichend sichere Aussage treffen zu können.
|
Page generated in 0.0619 seconds