Spelling suggestions: "subject:"denoising autoencoder"" "subject:"renoising autoencoder""
1 |
Using a denoising autoencoder for localization : Denoising cellular-based wireless localization data / Brusreducerande autoencoder för platsdata : Brusreducering av trådlös platsdata från mobiltelefonerDanielsson, Alexander, von Pfaler, Edvard January 2021 (has links)
A denoising autoencoder is a type of neural network which excels at removingnoise from noisy input data. In this project, a denoising autoencoder isoptimized for removing noise from mobile positioning data. The mobilepositioning data with noise is generated specifically for this project. In orderto generate realistic noise, a study in how real world noise looks like is carriedout. The project aims to answer the question: can a denoising autoencoderbe used to remove noise from mobile positioning data? The results showthat using this method can effectively cut the noise in half. In this reportit is mainly analyzed how the amount of hidden layers and respective sizesaffected the performance. It was concluded that the most optimal design forthe autoencoder was a single hidden layer model with multiple more nodes inthe hidden layer than the input and output layer. / En brusreducerande autoencoder är ett sorts neuralt nätverk som är specialiserat för att ta bort brus från indata. I detta projekt optimeras en brusreducerande autoencoder för att ta bort brus från mobilpositioneringsdata. Till projektet skapades helt ny mobilpositioneringsdata med realistiskt brus. Detta gjordes genom att studera hur verkligt brus ser ut och skapa ett program som efterliknar detta. Projektets syfte var att undersöka om en brusreducerande autoencoder kan användas för att ta bort brus från mobilpositioneringsdata. Resultaten visar att metoden kan ta bort ungefär hälften av bruset. I rapporten undersöks och analyseras även hur antalet dolda lager och antalet noder i dessa lager påverkade mängden brus som autoencodern lyckades ta bort. Från de gjorda testerna drogs slutsatsen att den mest optimala designen var en enkel design med ett enda dolt lager som hade betydligt fler noder än input- och outputlagren.
|
2 |
Réseaux de neurones à relaxation entraînés par critère d'autoencodeur débruitantSavard, François 08 1900 (has links)
L’apprentissage machine est un vaste domaine où l’on cherche à apprendre les paramètres
de modèles à partir de données concrètes. Ce sera pour effectuer des tâches demandant
des aptitudes attribuées à l’intelligence humaine, comme la capacité à traiter des don-
nées de haute dimensionnalité présentant beaucoup de variations. Les réseaux de neu-
rones artificiels sont un exemple de tels modèles. Dans certains réseaux de neurones dits
profonds, des concepts "abstraits" sont appris automatiquement.
Les travaux présentés ici prennent leur inspiration de réseaux de neurones profonds,
de réseaux récurrents et de neuroscience du système visuel. Nos tâches de test sont
la classification et le débruitement d’images quasi binaires. On permettra une rétroac-
tion où des représentations de haut niveau (plus "abstraites") influencent des représentations à bas niveau. Cette influence s’effectuera au cours de ce qu’on nomme relaxation,
des itérations où les différents niveaux (ou couches) du modèle s’interinfluencent. Nous
présentons deux familles d’architectures, l’une, l’architecture complètement connectée,
pouvant en principe traiter des données générales et une autre, l’architecture convolutionnelle, plus spécifiquement adaptée aux images. Dans tous les cas, les données utilisées
sont des images, principalement des images de chiffres manuscrits.
Dans un type d’expérience, nous cherchons à reconstruire des données qui ont été
corrompues. On a pu y observer le phénomène d’influence décrit précédemment en comparant le résultat avec et sans la relaxation. On note aussi certains gains numériques et
visuels en terme de performance de reconstruction en ajoutant l’influence des couches
supérieures. Dans un autre type de tâche, la classification, peu de gains ont été observés.
On a tout de même pu constater que dans certains cas la relaxation aiderait à apprendre
des représentations utiles pour classifier des images corrompues. L’architecture convolutionnelle développée, plus incertaine au départ, permet malgré tout d’obtenir des reconstructions numériquement et visuellement semblables à celles obtenues avec l’autre
architecture, même si sa connectivité est contrainte. / Machine learning is a vast field where we seek to learn parameters for models from
concrete data. The goal will be to execute various tasks requiring abilities normally
associated more with human intelligence than with a computer program, such as the
ability to process high dimensional data containing a lot of variations. Artificial neural
networks are a large class of such models. In some neural networks said to be deep, we
can observe that high level (or "abstract") concepts are automatically learned.
The work we present here takes its inspiration from deep neural networks, from
recurrent networks and also from neuroscience of the visual system. Our test tasks are
classification and denoising for near binary images. We aim to take advantage of a
feedback mechanism through which high-level representations, that is to say relatively
abstract concepts, can influence lower-level representations. This influence will happen
during what we call relaxation, which is iterations where the different levels (or layers)
of the model can influence each other. We will present two families of architectures
based on this mechanism. One, the fully connected architecture, can in principle accept
generic data. The other, the convolutional one, is specifically made for images. Both
were trained on images, though, and mostly images of written characters.
In one type of experiment, we want to reconstruct data that has been corrupted. In
these tasks, we have observed the feedback influence phenomenon previously described
by comparing the results we obtained with and without relaxation. We also note some
numerical and visual improvement in terms of reconstruction performance when we add
upper layers’ influence. In another type of task, classification, little gain has been noted.
Still, in one setting where we tried to classify noisy data with a representation trained
without prior class information, relaxation did seem to improve results significantly. The
convolutional architecture, a bit more risky at first, was shown to produce numerical and
visual results in reconstruction that are near those obtained with the fully connected
version, even though the connectivity is much more constrained.
|
3 |
Apprentissage de représentations sur-complètes par entraînement d’auto-encodeursLajoie, Isabelle 12 1900 (has links)
Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans
les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE). / Progress in the machine learning domain allows computational system to address more
and more complex tasks associated with vision, audio signal or natural language processing. Among the existing models, we find the Artificial Neural Network (ANN), whose popularity increased suddenly with the recent breakthrough of Hinton et al. [22], that consists in using Restricted Boltzmann Machines (RBM) for performing an unsupervised, layer by layer, pre-training initialization, of a Deep Belief Network (DBN), which enables the subsequent successful supervised training of such architecture. Since this discovery, researchers studied the efficiency of other similar pre-training strategies such
as the stacking of traditional auto-encoder (SAE) [5, 38] and the stacking of denoising
auto-encoder (SDAE) [44]. This is the context in which the present study started. After a brief introduction of the basic machine learning principles and of the pre-training methods used until now with RBM, AE and DAE modules, we performed a series of experiments to deepen our
understanding of pre-training with SDAE, explored its different proprieties and explored variations on the DAE algorithm as alternative strategies to initialize deep networks. We evaluated the sensitivity to the noise level, and influence of number of layers and number of hidden units on the generalization error obtained with SDAE. We experimented with other noise types and saw improved performance on the supervised task with the use of pepper and salt noise (PS) or gaussian noise (GS), noise types that are more justified then the one used until now which is masking noise (MN). Moreover, modifying the algorithm by imposing an emphasis on the corrupted components reconstruction during the unsupervised training of each different DAE showed encouraging performance improvements. Our work also allowed to reveal that DAE was capable of learning, on naturals images, filters similar to those found in V1 cells of the visual cortex, that are in essence edges detectors. In addition, we were able to verify that the learned representations of SDAE, are very good characteristics to be fed to a linear or gaussian support vector machine (SVM), considerably enhancing its generalization performance. Also, we observed that, alike DBN, and unlike SAE, the SDAE had the potential to be used as a good generative model. As well, we opened the door to novel pre-training strategies
and discovered the potential of one of them : the stacking of renoising auto-encoders
(SRAE).
|
4 |
Apprentissage de représentations sur-complètes par entraînement d’auto-encodeursLajoie, Isabelle 12 1900 (has links)
Les avancés dans le domaine de l’intelligence artificielle, permettent à des systèmes informatiques de résoudre des tâches de plus en plus complexes liées par exemple à la vision, à la compréhension de signaux sonores ou au traitement de la langue. Parmi les modèles existants, on retrouve les Réseaux de Neurones Artificiels (RNA), dont la popularité a fait un grand bond en avant avec la découverte de Hinton et al. [22], soit l’utilisation de Machines de Boltzmann Restreintes (RBM) pour un pré-entraînement non-supervisé couche après couche, facilitant grandement l’entraînement supervisé du réseau à plusieurs couches cachées (DBN), entraînement qui s’avérait jusqu’alors très difficile à réussir. Depuis cette découverte, des chercheurs ont étudié l’efficacité de nouvelles stratégies de pré-entraînement, telles que l’empilement d’auto-encodeurs traditionnels(SAE) [5, 38], et l’empilement d’auto-encodeur débruiteur (SDAE) [44]. C’est dans ce contexte qu’a débuté la présente étude. Après un bref passage en revue des notions de base du domaine de l’apprentissage machine et des méthodes de pré-entraînement employées jusqu’à présent avec les modules RBM, AE et DAE, nous avons approfondi notre compréhension du pré-entraînement de type SDAE, exploré ses différentes propriétés et étudié des variantes de SDAE comme stratégie d’initialisation d’architecture profonde. Nous avons ainsi pu, entre autres choses, mettre en lumière l’influence du niveau de bruit, du nombre de couches et du nombre d’unités cachées sur l’erreur de généralisation du SDAE. Nous avons constaté une amélioration de la performance sur la tâche supervisée avec l’utilisation des bruits poivre et sel (PS) et gaussien (GS), bruits s’avérant mieux justifiés que celui utilisé jusqu’à présent, soit le masque à zéro (MN). De plus, nous avons démontré que la performance profitait d’une emphase imposée sur la reconstruction des données corrompues durant l’entraînement des différents DAE. Nos travaux ont aussi permis de révéler que le DAE était en mesure d’apprendre, sur des images naturelles, des filtres semblables à ceux retrouvés dans
les cellules V1 du cortex visuel, soit des filtres détecteurs de bordures. Nous aurons par ailleurs pu montrer que les représentations apprises du SDAE, composées des caractéristiques ainsi extraites, s’avéraient fort utiles à l’apprentissage d’une machine à vecteurs de support (SVM) linéaire ou à noyau gaussien, améliorant grandement sa performance de généralisation. Aussi, nous aurons observé que similairement au DBN, et contrairement au SAE, le SDAE possédait une bonne capacité en tant que modèle générateur. Nous avons également ouvert la porte à de nouvelles stratégies de pré-entraînement et découvert le potentiel de l’une d’entre elles, soit l’empilement d’auto-encodeurs rebruiteurs (SRAE). / Progress in the machine learning domain allows computational system to address more
and more complex tasks associated with vision, audio signal or natural language processing. Among the existing models, we find the Artificial Neural Network (ANN), whose popularity increased suddenly with the recent breakthrough of Hinton et al. [22], that consists in using Restricted Boltzmann Machines (RBM) for performing an unsupervised, layer by layer, pre-training initialization, of a Deep Belief Network (DBN), which enables the subsequent successful supervised training of such architecture. Since this discovery, researchers studied the efficiency of other similar pre-training strategies such
as the stacking of traditional auto-encoder (SAE) [5, 38] and the stacking of denoising
auto-encoder (SDAE) [44]. This is the context in which the present study started. After a brief introduction of the basic machine learning principles and of the pre-training methods used until now with RBM, AE and DAE modules, we performed a series of experiments to deepen our
understanding of pre-training with SDAE, explored its different proprieties and explored variations on the DAE algorithm as alternative strategies to initialize deep networks. We evaluated the sensitivity to the noise level, and influence of number of layers and number of hidden units on the generalization error obtained with SDAE. We experimented with other noise types and saw improved performance on the supervised task with the use of pepper and salt noise (PS) or gaussian noise (GS), noise types that are more justified then the one used until now which is masking noise (MN). Moreover, modifying the algorithm by imposing an emphasis on the corrupted components reconstruction during the unsupervised training of each different DAE showed encouraging performance improvements. Our work also allowed to reveal that DAE was capable of learning, on naturals images, filters similar to those found in V1 cells of the visual cortex, that are in essence edges detectors. In addition, we were able to verify that the learned representations of SDAE, are very good characteristics to be fed to a linear or gaussian support vector machine (SVM), considerably enhancing its generalization performance. Also, we observed that, alike DBN, and unlike SAE, the SDAE had the potential to be used as a good generative model. As well, we opened the door to novel pre-training strategies
and discovered the potential of one of them : the stacking of renoising auto-encoders
(SRAE).
|
5 |
Réseaux de neurones à relaxation entraînés par critère d'autoencodeur débruitantSavard, François 08 1900 (has links)
L’apprentissage machine est un vaste domaine où l’on cherche à apprendre les paramètres
de modèles à partir de données concrètes. Ce sera pour effectuer des tâches demandant
des aptitudes attribuées à l’intelligence humaine, comme la capacité à traiter des don-
nées de haute dimensionnalité présentant beaucoup de variations. Les réseaux de neu-
rones artificiels sont un exemple de tels modèles. Dans certains réseaux de neurones dits
profonds, des concepts "abstraits" sont appris automatiquement.
Les travaux présentés ici prennent leur inspiration de réseaux de neurones profonds,
de réseaux récurrents et de neuroscience du système visuel. Nos tâches de test sont
la classification et le débruitement d’images quasi binaires. On permettra une rétroac-
tion où des représentations de haut niveau (plus "abstraites") influencent des représentations à bas niveau. Cette influence s’effectuera au cours de ce qu’on nomme relaxation,
des itérations où les différents niveaux (ou couches) du modèle s’interinfluencent. Nous
présentons deux familles d’architectures, l’une, l’architecture complètement connectée,
pouvant en principe traiter des données générales et une autre, l’architecture convolutionnelle, plus spécifiquement adaptée aux images. Dans tous les cas, les données utilisées
sont des images, principalement des images de chiffres manuscrits.
Dans un type d’expérience, nous cherchons à reconstruire des données qui ont été
corrompues. On a pu y observer le phénomène d’influence décrit précédemment en comparant le résultat avec et sans la relaxation. On note aussi certains gains numériques et
visuels en terme de performance de reconstruction en ajoutant l’influence des couches
supérieures. Dans un autre type de tâche, la classification, peu de gains ont été observés.
On a tout de même pu constater que dans certains cas la relaxation aiderait à apprendre
des représentations utiles pour classifier des images corrompues. L’architecture convolutionnelle développée, plus incertaine au départ, permet malgré tout d’obtenir des reconstructions numériquement et visuellement semblables à celles obtenues avec l’autre
architecture, même si sa connectivité est contrainte. / Machine learning is a vast field where we seek to learn parameters for models from
concrete data. The goal will be to execute various tasks requiring abilities normally
associated more with human intelligence than with a computer program, such as the
ability to process high dimensional data containing a lot of variations. Artificial neural
networks are a large class of such models. In some neural networks said to be deep, we
can observe that high level (or "abstract") concepts are automatically learned.
The work we present here takes its inspiration from deep neural networks, from
recurrent networks and also from neuroscience of the visual system. Our test tasks are
classification and denoising for near binary images. We aim to take advantage of a
feedback mechanism through which high-level representations, that is to say relatively
abstract concepts, can influence lower-level representations. This influence will happen
during what we call relaxation, which is iterations where the different levels (or layers)
of the model can influence each other. We will present two families of architectures
based on this mechanism. One, the fully connected architecture, can in principle accept
generic data. The other, the convolutional one, is specifically made for images. Both
were trained on images, though, and mostly images of written characters.
In one type of experiment, we want to reconstruct data that has been corrupted. In
these tasks, we have observed the feedback influence phenomenon previously described
by comparing the results we obtained with and without relaxation. We also note some
numerical and visual improvement in terms of reconstruction performance when we add
upper layers’ influence. In another type of task, classification, little gain has been noted.
Still, in one setting where we tried to classify noisy data with a representation trained
without prior class information, relaxation did seem to improve results significantly. The
convolutional architecture, a bit more risky at first, was shown to produce numerical and
visual results in reconstruction that are near those obtained with the fully connected
version, even though the connectivity is much more constrained.
|
Page generated in 0.0879 seconds