• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 19
  • 8
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 142
  • 142
  • 97
  • 24
  • 20
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Stochastic distribution tracking control for stochastic non-linear systems via probability density function vectorisation

Liu, Y., Zhang, Qichun, Yue, H. 08 February 2022 (has links)
Yes / This paper presents a new control strategy for stochastic distribution shape tracking regarding non-Gaussian stochastic non-linear systems. The objective can be summarised as adjusting the probability density function (PDF) of the system output to any given desired distribution. In order to achieve this objective, the system output PDF has first been formulated analytically, which is time-variant. Then, the PDF vectorisation has been implemented to simplify the model description. Using the vector-based representation, the system identification and control design have been performed to achieve the PDF tracking. In practice, the PDF evolution is difficult to implement in real-time, thus a data-driven extension has also been discussed in this paper, where the vector-based model can be obtained using kernel density estimation (KDE) with the real-time data. Furthermore, the stability of the presented control design has been analysed, which is validated by a numerical example. As an extension, the multi-output stochastic systems have also been discussed for joint PDF tracking using the proposed algorithm, and the perspectives of advanced controller have been discussed. The main contribution of this paper is to propose: (1) a new sampling-based PDF transformation to reduce the modelling complexity, (2) a data-driven approach for online implementation without model pre-training, and (3) a feasible framework to integrate the existing control methods. / This paper is partly supported by National Science Foundation of China under Grants (61603262 and 62073226), Liaoning Province Natural Science Joint Foundation in Key Areas (2019- KF-03-08), Natural Science Foundation of Liaoning Province (20180550418), Liaoning BaiQianWan Talents Program, i5 Intelligent Manufacturing Institute Fund of Shenyang Institute of Technology (i5201701), Central Government Guides Local Science and Technology Development Funds of Liaoning Province (2021JH6/10500137).
62

Computational methods for random differential equations: probability density function and estimation of the parameters

Calatayud Gregori, Julia 05 March 2020 (has links)
[EN] Mathematical models based on deterministic differential equations do not take into account the inherent uncertainty of the physical phenomenon (in a wide sense) under study. In addition, inaccuracies in the collected data often arise due to errors in the measurements. It thus becomes necessary to treat the input parameters of the model as random quantities, in the form of random variables or stochastic processes. This gives rise to the study of random ordinary and partial differential equations. The computation of the probability density function of the stochastic solution is important for uncertainty quantification of the model output. Although such computation is a difficult objective in general, certain stochastic expansions for the model coefficients allow faithful representations for the stochastic solution, which permits approximating its density function. In this regard, Karhunen-Loève and generalized polynomial chaos expansions become powerful tools for the density approximation. Also, methods based on discretizations from finite difference numerical schemes permit approximating the stochastic solution, therefore its probability density function. The main part of this dissertation aims at approximating the probability density function of important mathematical models with uncertainties in their formulation. Specifically, in this thesis we study, in the stochastic sense, the following models that arise in different scientific areas: in Physics, the model for the damped pendulum; in Biology and Epidemiology, the models for logistic growth and Bertalanffy, as well as epidemiological models; and in Thermodynamics, the heat partial differential equation. We rely on Karhunen-Loève and generalized polynomial chaos expansions and on finite difference schemes for the density approximation of the solution. These techniques are only applicable when we have a forward model in which the input parameters have certain probability distributions already set. When the model coefficients are estimated from collected data, we have an inverse problem. The Bayesian inference approach allows estimating the probability distribution of the model parameters from their prior probability distribution and the likelihood of the data. Uncertainty quantification for the model output is then carried out using the posterior predictive distribution. In this regard, the last part of the thesis shows the estimation of the distributions of the model parameters from experimental data on bacteria growth. To do so, a hybrid method that combines Bayesian parameter estimation and generalized polynomial chaos expansions is used. / [ES] Los modelos matemáticos basados en ecuaciones diferenciales deterministas no tienen en cuenta la incertidumbre inherente del fenómeno físico (en un sentido amplio) bajo estudio. Además, a menudo se producen inexactitudes en los datos recopilados debido a errores en las mediciones. Por lo tanto, es necesario tratar los parámetros de entrada del modelo como cantidades aleatorias, en forma de variables aleatorias o procesos estocásticos. Esto da lugar al estudio de las ecuaciones diferenciales aleatorias. El cálculo de la función de densidad de probabilidad de la solución estocástica es importante en la cuantificación de la incertidumbre de la respuesta del modelo. Aunque dicho cálculo es un objetivo difícil en general, ciertas expansiones estocásticas para los coeficientes del modelo dan lugar a representaciones fieles de la solución estocástica, lo que permite aproximar su función de densidad. En este sentido, las expansiones de Karhunen-Loève y de caos polinomial generalizado constituyen herramientas para dicha aproximación de la densidad. Además, los métodos basados en discretizaciones de esquemas numéricos de diferencias finitas permiten aproximar la solución estocástica, por lo tanto, su función de densidad de probabilidad. La parte principal de esta disertación tiene como objetivo aproximar la función de densidad de probabilidad de modelos matemáticos importantes con incertidumbre en su formulación. Concretamente, en esta memoria se estudian, en un sentido estocástico, los siguientes modelos que aparecen en diferentes áreas científicas: en Física, el modelo del péndulo amortiguado; en Biología y Epidemiología, los modelos de crecimiento logístico y de Bertalanffy, así como modelos de tipo epidemiológico; y en Termodinámica, la ecuación en derivadas parciales del calor. Utilizamos expansiones de Karhunen-Loève y de caos polinomial generalizado y esquemas de diferencias finitas para la aproximación de la densidad de la solución. Estas técnicas solo son aplicables cuando tenemos un modelo directo en el que los parámetros de entrada ya tienen determinadas distribuciones de probabilidad establecidas. Cuando los coeficientes del modelo se estiman a partir de los datos recopilados, tenemos un problema inverso. El enfoque de inferencia Bayesiana permite estimar la distribución de probabilidad de los parámetros del modelo a partir de su distribución de probabilidad previa y la verosimilitud de los datos. La cuantificación de la incertidumbre para la respuesta del modelo se lleva a cabo utilizando la distribución predictiva a posteriori. En este sentido, la última parte de la tesis muestra la estimación de las distribuciones de los parámetros del modelo a partir de datos experimentales sobre el crecimiento de bacterias. Para hacerlo, se utiliza un método híbrido que combina la estimación de parámetros Bayesianos y los desarrollos de caos polinomial generalizado. / [CA] Els models matemàtics basats en equacions diferencials deterministes no tenen en compte la incertesa inherent al fenomen físic (en un sentit ampli) sota estudi. A més a més, sovint es produeixen inexactituds en les dades recollides a causa d'errors de mesurament. Es fa així necessari tractar els paràmetres d'entrada del model com a quantitats aleatòries, en forma de variables aleatòries o processos estocàstics. Açò dóna lloc a l'estudi de les equacions diferencials aleatòries. El càlcul de la funció de densitat de probabilitat de la solució estocàstica és important per a quantificar la incertesa de la sortida del model. Tot i que, en general, aquest càlcul és un objectiu difícil d'assolir, certes expansions estocàstiques dels coeficients del model donen lloc a representacions fidels de la solució estocàstica, el que permet aproximar la seua funció de densitat. En aquest sentit, les expansions de Karhunen-Loève i de caos polinomial generalitzat esdevenen eines per a l'esmentada aproximació de la densitat. A més a més, els mètodes basats en discretitzacions mitjançant esquemes numèrics de diferències finites permeten aproximar la solució estocàstica, per tant la seua funció de densitat de probabilitat. La part principal d'aquesta dissertació té com a objectiu aproximar la funció de densitat de probabilitat d'importants models matemàtics amb incerteses en la seua formulació. Concretament, en aquesta memòria s'estudien, en un sentit estocàstic, els següents models que apareixen en diferents àrees científiques: en Física, el model del pèndol amortit; en Biologia i Epidemiologia, els models de creixement logístic i de Bertalanffy, així com models de tipus epidemiològic; i en Termodinàmica, l'equació en derivades parcials de la calor. Per a l'aproximació de la densitat de la solució, ens basem en expansions de Karhunen-Loève i de caos polinomial generalitzat i en esquemes de diferències finites. Aquestes tècniques només són aplicables quan tenim un model cap avant en què els paràmetres d'entrada tenen ja determinades distribucions de probabilitat. Quan els coeficients del model s'estimen a partir de les dades recollides, tenim un problema invers. L'enfocament de la inferència Bayesiana permet estimar la distribució de probabilitat dels paràmetres del model a partir de la seua distribució de probabilitat prèvia i la versemblança de les dades. La quantificació de la incertesa per a la resposta del model es fa mitjançant la distribució predictiva a posteriori. En aquest sentit, l'última part de la tesi mostra l'estimació de les distribucions dels paràmetres del model a partir de dades experimentals sobre el creixement de bacteris. Per a fer-ho, s'utilitza un mètode híbrid que combina l'estimació de paràmetres Bayesiana i els desenvolupaments de caos polinomial generalitzat. / This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017–89664–P. / Calatayud Gregori, J. (2020). Computational methods for random differential equations: probability density function and estimation of the parameters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138396 / Premios Extraordinarios de tesis doctorales
63

The Effect of Receiver Nonlinearity and Nonlinearity Induced Interference on the Performance of Amplitude Modulated Signals

Moore, Natalie 22 August 2018 (has links)
All wireless receivers have some degree of nonlinearity that can negatively impact performance. Two major effects from this nonlinearity are power compression, which leads to amplitude and phase distortions in the received signal, and desensitization caused by a high powered interfering signal at an adjacent channel. As the RF spectrum becomes more crowded, the interference caused by these adjacent signals will become a more significant problem for receiver design. Therefore, having bit and symbol error rate expressions that take the receiver nonlinearity into account will allow for determining the linearity requirements of a receiver. This thesis examines the modeling of the probability density functions of M-PAM and M-QAM signals through an AWGN channel taking into account the impact of receiver nonlinearity. A change of variables technique is used to provide a relationship between the pdf of these signals with a linear receiver and the pdf with a nonlinear receiver. Additionally, theoretical bit and symbol error rates are derived from the pdf expressions. Finally, this approach is extended by deriving pdf and error rate expressions for these signals when nearby blocking signals cause desensitization of the signal of interest. Matlab simulation shows that the derived expressions for a nonlinear receiver have the same accuracy as the accepted expressions for linear receivers. / Master of Science / All wireless receivers have some amount of nonlinearity that can distort a received signal and impact performance. For amplitude modulated signals, the power compression caused by the nonlinear receiver will cause distortions in the amplitude and phase of the received signal. Additionally, a high powered interfering signal at a close frequency can decrease the gain and distort the received signal. This thesis examines how the probability density of an amplitude modulated signal with a nonlinear receiver can be modeled for both of these situations. These theoretical probability density functions are used to derive theoretical error rate expressions for the signals both with and without the adjacent channel interference. Simulations in Matlab show that the accuracy of these derived expressions is similar to the accuracies of the linear receiver expressions. These derived expressions will be able to remove the need for time consuming simulation when designing receivers for wireless systems.
64

Analysis of diagnostic climate model cloud parameterisations using large-eddy simulations

Rosch, Jan, Heus, Thijs, Salzmann, Marc, Mülmenstädt, Johannes, Schlemmer, Linda, Quaas, Johannes 28 April 2016 (has links) (PDF)
Current climate models often predict fractional cloud cover on the basis of a diagnostic probability density function (PDF) describing the subgrid-scale variability of the total water specific humidity, qt, favouring schemes with limited complexity. Standard shapes are uniform or triangular PDFs the width of which is assumed to scale with the gridbox mean qt or the grid-box mean saturation specific humidity, qs. In this study, the qt variability is analysed from large-eddy simulations for two stratocumulus, two shallow cumulus, and one deep convective cases. We find that in most cases, triangles are a better approximation to the simulated PDFs than uniform distributions. In two of the 24 slices examined, the actual distributions were so strongly skewed that the simple symmetric shapes could not capture the PDF at all. The distribution width for either shape scales acceptably well with both the mean value of qt and qs, the former being a slightly better choice. The qt variance is underestimated by the fitted PDFs, but overestimated by the existing parameterisations. While the cloud fraction is in general relatively well diagnosed from fitted or parameterised uniform or triangular PDFs, it fails to capture cases with small partial cloudiness, and in 10 – 30% of the cases misdiagnoses clouds in clear skies or vice-versa. The results suggest choosing a parameterisation with a triangular shape, where the distribution width would scale with the grid-box mean qt using a scaling factor of 0.076. This, however, is subject to the caveat that the reference simulations examined here were partly for rather small domains and driven by idealised boundary conditions.
65

Visual Analysis of High-Dimensional Point Clouds using Topological Abstraction

Oesterling, Patrick 17 May 2016 (has links) (PDF)
This thesis is about visualizing a kind of data that is trivial to process by computers but difficult to imagine by humans because nature does not allow for intuition with this type of information: high-dimensional data. Such data often result from representing observations of objects under various aspects or with different properties. In many applications, a typical, laborious task is to find related objects or to group those that are similar to each other. One classic solution for this task is to imagine the data as vectors in a Euclidean space with object variables as dimensions. Utilizing Euclidean distance as a measure of similarity, objects with similar properties and values accumulate to groups, so-called clusters, that are exposed by cluster analysis on the high-dimensional point cloud. Because similar vectors can be thought of as objects that are alike in terms of their attributes, the point cloud\'s structure and individual cluster properties, like their size or compactness, summarize data categories and their relative importance. The contribution of this thesis is a novel analysis approach for visual exploration of high-dimensional point clouds without suffering from structural occlusion. The work is based on implementing two key concepts: The first idea is to discard those geometric properties that cannot be preserved and, thus, lead to the typical artifacts. Topological concepts are used instead to shift away the focus from a point-centered view on the data to a more structure-centered perspective. The advantage is that topology-driven clustering information can be extracted in the data\'s original domain and be preserved without loss in low dimensions. The second idea is to split the analysis into a topology-based global overview and a subsequent geometric local refinement. The occlusion-free overview enables the analyst to identify features and to link them to other visualizations that permit analysis of those properties not captured by the topological abstraction, e.g. cluster shape or value distributions in particular dimensions or subspaces. The advantage of separating structure from data point analysis is that restricting local analysis only to data subsets significantly reduces artifacts and the visual complexity of standard techniques. That is, the additional topological layer enables the analyst to identify structure that was hidden before and to focus on particular features by suppressing irrelevant points during local feature analysis. This thesis addresses the topology-based visual analysis of high-dimensional point clouds for both the time-invariant and the time-varying case. Time-invariant means that the points do not change in their number or positions. That is, the analyst explores the clustering of a fixed and constant set of points. The extension to the time-varying case implies the analysis of a varying clustering, where clusters appear as new, merge or split, or vanish. Especially for high-dimensional data, both tracking---which means to relate features over time---but also visualizing changing structure are difficult problems to solve.
66

Uncertainty and sensitivity analysis of a materials test reactor / Mogomotsi Ignatius Modukanele

Modukanele, Mogomotsi Ignatius January 2013 (has links)
This study was based on the uncertainty and sensitivity analysis of a generic 10 MW Materials Test Reactor (MTR). In this study an uncertainty and sensitivity analysis methodology called code scaling applicability and uncertainty (CSAU) was implemented. Although this methodology follows 14 steps, only the following were carried out: scenario specification, nuclear power plant (NPP) selection, phenomena identification and ranking table (PIRT), selection of frozen code, provision of code documentation, determination of code applicability, determination of code and experiment accuracy, NPP sensitivity analysis calculations, combination of biases and uncertainties, and total uncertainty to calculate specific scenario in a specific NPP. The thermal hydraulic code Flownex®1 was used to model only the reactor core to investigate the effects of the input parameters on the selected output parameters of the hot channel in the core. These output parameters were mass flow rate, temperature of the coolant, outlet pressure, centreline temperature of the fuel and surface temperature of the cladding. The PIRT process was used in conjunction with the sensitivity analysis results in order to select the relevant input parameters that significantly influenced the selected output parameters. The input parameters that have the largest effect on the selected output parameters were found to be the coolant flow channel width between the plates in the hot channel, the width of the fuel plates itself in the hot channel, the heat generation in the fuel plate of the hot channel, the global mass flow rate, the global coolant inlet temperature, the coolant flow channel width between the plates in the cold channel, and the width of the fuel plates in the cold channel. The uncertainty of input parameters was then propagated in Flownex using the Monte Carlo based uncertainty analysis function. From these results, the corresponding probability density function (PDF) of each selected output parameter was constructed. These functions were found to follow a normal distribution. / MIng (Nuclear Engineering), North-West University, Potchefstroom Campus, 2014
67

Maximum-likelihood kernel density estimation in high-dimensional feature spaces /| C.M. van der Walt

Van der Walt, Christiaan Maarten January 2014 (has links)
With the advent of the internet and advances in computing power, the collection of very large high-dimensional datasets has become feasible { understanding and modelling high-dimensional data has thus become a crucial activity, especially in the field of pattern recognition. Since non-parametric density estimators are data-driven and do not require or impose a pre-defined probability density function on data, they are very powerful tools for probabilistic data modelling and analysis. Conventional non-parametric density estimation methods, however, originated from the field of statistics and were not originally intended to perform density estimation in high-dimensional features spaces { as is often encountered in real-world pattern recognition tasks. Therefore we address the fundamental problem of non-parametric density estimation in high-dimensional feature spaces in this study. Recent advances in maximum-likelihood (ML) kernel density estimation have shown that kernel density estimators hold much promise for estimating nonparametric probability density functions in high-dimensional feature spaces. We therefore derive two new iterative kernel bandwidth estimators from the maximum-likelihood (ML) leave one-out objective function and also introduce a new non-iterative kernel bandwidth estimator (based on the theoretical bounds of the ML bandwidths) for the purpose of bandwidth initialisation. We name the iterative kernel bandwidth estimators the minimum leave-one-out entropy (MLE) and global MLE estimators, and name the non-iterative kernel bandwidth estimator the MLE rule-of-thumb estimator. We compare the performance of the MLE rule-of-thumb estimator and conventional kernel density estimators on artificial data with data properties that are varied in a controlled fashion and on a number of representative real-world pattern recognition tasks, to gain a better understanding of the behaviour of these estimators in high-dimensional spaces and to determine whether these estimators are suitable for initialising the bandwidths of iterative ML bandwidth estimators in high dimensions. We find that there are several regularities in the relative performance of conventional kernel density estimators across different tasks and dimensionalities and that the Silverman rule-of-thumb bandwidth estimator performs reliably across most tasks and dimensionalities of the pattern recognition datasets considered, even in high-dimensional feature spaces. Based on this empirical evidence and the intuitive theoretical motivation that the Silverman estimator optimises the asymptotic mean integrated squared error (assuming a Gaussian reference distribution), we select this estimator to initialise the bandwidths of the iterative ML kernel bandwidth estimators compared in our simulation studies. We then perform a comparative simulation study of the newly introduced iterative MLE estimators and other state-of-the-art iterative ML estimators on a number of artificial and real-world high-dimensional pattern recognition tasks. We illustrate with artificial data (guided by theoretical motivations) under what conditions certain estimators should be preferred and we empirically confirm on real-world data that no estimator performs optimally on all tasks and that the optimal estimator depends on the properties of the underlying density function being estimated. We also observe an interesting case of the bias-variance trade-off where ML estimators with fewer parameters than the MLE estimator perform exceptionally well on a wide variety of tasks; however, for the cases where these estimators do not perform well, the MLE estimator generally performs well. The newly introduced MLE kernel bandwidth estimators prove to be a useful contribution to the field of pattern recognition, since they perform optimally on a number of real-world pattern recognition tasks investigated and provide researchers and practitioners with two alternative estimators to employ for the task of kernel density estimation. / PhD (Information Technology), North-West University, Vaal Triangle Campus, 2014
68

Multi-regime Turbulent Combustion Modeling using Large Eddy Simulation/ Probability Density Function

Shashank Satyanarayana Kashyap (6945575) 14 August 2019 (has links)
Combustion research is at the forefront of development of clean and efficient IC engines, gas turbines, rocket propulsion systems etc. With the advent of faster computers and parallel programming, computational studies of turbulent combustion is increasing rapidly. Many turbulent combustion models have been previously developed based on certain underlying assumptions. One of the major assumptions of the models is the regime it can be used for: either premixed or non-premixed combustion. However in reality, combustion systems are multi-regime in nature, i.e.,\ co-existence of premixed and non-premixed modes. Thus, there is a need for development of multi-regime combustion models which closely follows the physics of combustion phenomena. Much of previous modeling efforts for multi-regime combustion was done using flamelet-type models. As a first, the current study uses the highly robust transported Probability Density Function (PDF) method coupled with Large Eddy Simulation (LES) to develop a multi-regime model. The model performance is tested for Sydney Flame L, a piloted methane-air turbulent flame. The concept of flame index is used to detect the extent of premixed and non-premixed combustion modes. The drawbacks of using the traditional flame index definition in the context of PDF method are identified. Necessary refinements to this definition, which are based on the species gradient magnitudes, are proposed for the multi-regime model development. This results in identifying a new model parameter beta which defines a gradient threshold for the calculation of flame index. A parametric study is done to determine a suitable value for beta, using which the multi-regime model performance is assessed for Flame L by comparing it against the widely used non-premixed PDF model for three mixing models: Modified Curl (MCurl), Interaction by Exchange with Mean (IEM) and Euclidean Minimum Spanning Trees (EMST). The multi-regime model shows a significant improvement in prediction of mean scalar quantities compared to the non-premixed PDF model when MCurl mixing model is used. Similar improvements are observed in the multi-regime model when IEM and EMST mixing models are used. The results show potential foundation for further multi-regime model development using PDF model.
69

Estimation of Emission Strength and Air Pollutant Concentrations by Lagrangian Particle Modeling

Manomaiphiboon, Kasemsan 30 March 2004 (has links)
A Lagrangian particle model was applied to estimating emission strength and air pollutant concentrations specifically for the short-range dispersion of an air pollutant in the atmospheric boundary layer. The model performance was evaluated with experimental data. The model was then used as the platform of parametric uncertainty analysis, in which effects of uncertainties in five parameters (Monin-Obukhov length, friction velocity, roughness height, mixing height, and the universal constant of the random component) of the model on mean ground-level concentrations were examined under slightly and moderately stable conditions. The analysis was performed under a probabilistic framework using Monte Carlo simulations with Latin hypercube sampling and linear regression modeling. In addition, four studies related to the Lagrangian particle modeling was included. They are an alternative technique of formulating joint probability density functions of velocity for atmospheric turbulence based on the Koehler-Symanowski technique, analysis of local increments in a multidimensional single-particle Lagrangian particle model using the algebra of Ito integrals and the Wagner-Platen formula, analogy between the diffusion limit of Lagrangian particle models and the classical theory of turbulent diffusion, and evaluation of some proposed forms of the Lagrangian velocity autocorrelation of turbulence.
70

Eκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής

Γρενζελιάς, Αναστάσιος 25 June 2009 (has links)
Στη συγκεκριμένη εργασία ασχολήθηκα με την εκτίμηση της συνάρτησης πυκνότητας πιθανότητας παραμέτρων που προέρχονται από σήματα πηγών ακουστικής εκπομπής που επεξεργάστηκα. Στο θεωρητικό κομμάτι το μεγαλύτερο ενδιαφέρον παρουσίασαν ο Μη Καταστροφικός Έλεγχος και η Ακουστική Εκπομπή, καθώς και οι εφαρμογές τους. Τα δεδομένα που επεξεργάστηκα χωρίζονται σε δύο κατηγορίες: σε εκείνα που μου δόθηκαν έτοιμα και σε εκείνα που λήφθηκαν μετά από μετρήσεις. Στην επεξεργασία των πειραματικών δεδομένων χρησιμοποιήθηκε ο αλγόριθμος πρόβλεψης-μεγιστοποίησης, τον οποίο μελέτησα θεωρητικά και με βάση τον οποίο εξάχθηκαν οι παράμετροι για κάθε σήμα. Έχοντας βρει τις παραμέτρους, προχώρησα στην ταξινόμηση των σημάτων σε κατηγορίες με βάση τη θεωρία της αναγνώρισης προτύπων. Στο τέλος της εργασίας παρατίθεται το παράρτημα με τα αναλυτικά αποτελέσματα, καθώς και η βιβλιογραφία που χρησιμοποίησα. / In this diploma paper the subject was the calculation of the probability density function of parameters which come from signals of sources of acoustic emission. In the theoritical part, the chapters with the greatest interest were Non Destructive Control and Acoustic Emission and their applications. The data which were processed are divided in two categories: those which were given without requiring any laboratory research and those which demanded laboratory research. The expectation-maximization algorithm, which was used in the process of the laboratory data, was the basis for the calculation of the parameters of each signal. Having calculated the parameters, the signals were classified in categories according to the theory of pattern recognition. In the end of the paper, the results and the bibliography which was used are presented.

Page generated in 0.0683 seconds