• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 31
  • 21
  • 17
  • 13
  • 11
  • 11
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Pressure and doping effects on the anomalous phase transition in ternary superconductor Bi2Rh3Se2

Chen, Ching-Yuan 23 July 2012 (has links)
Bi2Rh3Se2 have been known as a charge-density-wave (CDW) superconductor, where the superconducting critical temperature Tc and the CDW phase transition are about 0.7 K and 250 K, respectively. Since there has no definite proof that the anomaly at around 250 K comes from charge-density-wave, we wished to provide another evidence to study whether the superconductor had the properties of CDW by electric resistivity measurements applied different pressures. Bi2Rh3Se2 was prepared by using the solid state reaction method and heating in the quartz tube. After the sample was synthesized, the quality was identified by XRD, MPMS, and specific heat probe. With the confirmation of the above-mentioned measurements, we can determine the sample¡¦s quality is good. Furthermore, temperature-dependent resistivity (2-340 K) under pressure (up to 22.23 kbar) on the ternary superconductor Bi2Rh3Se2 are performed to study the possible coexistence of CDW and superconductivity. Interestingly, the resistive anomaly occurred at Ts~250 K, is shifted to higher temperature with increasing pressure. This experimental finding is not consistent with a traditional CDW transition. Moreover, the temperature-dependent Transmission Electron Microscopy (TEM) electron diffraction is evident a structural phase transition from space group ¡§C1 2/m 1¡¨ (Ts > 250 K) to ¡§P1 2/m 1¡¨ (Ts < 250 K). Finally, We do the Co doping to make sure the effects of chemical pressure on this phase transition. The results are opposite to imposed by physical pressure that the transition is shift to lower temperature with more Co inside the sample.
22

Estudo das propriedades elétricas não lineares de polímeros conjugados

Souza, Valdeci Pereira Mariano de [UNESP] 18 February 2003 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:32Z (GMT). No. of bitstreams: 0 Previous issue date: 2003-02-18Bitstream added on 2014-06-13T20:27:50Z : No. of bitstreams: 1 souza_vpm_me_rcla.pdf: 535132 bytes, checksum: d3bce6e40a2c0ef0a0bc8cc227fe99dd (MD5) / Neste trabalho, apresentamos um estudo experimental das propriedades elétricas não lineares de polímeros conjugados, como por exemplo, curvas I(V) não lineares para baixos valores de campo elétrico aplicado e existência de um campo elétrico de threshold. Investigamos o comportamento elétrico não linear em pastilhas prensadas de poli(3-metiltiofeno) (P3MT) oxidadas, obtidas através do processo de síntese eletroquímica. Das medidas elétricas realizadas, na faixa de temperatura (~9 K - ~297 K), os resultados experimentais obtidos: curvas I(V), condutividade versus freqüência e constante dielétrica versus freqüência, foram comparados com os diversos modelos teóricos existentes na literatura. Os dados obtidos em toda a faixa de temperatura mencionada mostraram boa concordância com a teoria de tunelamento para CDW (charge density wave deppining) proposta por J. Bardeen. / In this work, we present an experimental study of the non-linear electrical properties in conjugated polymers, as for example, non-linear I(V) curves at low electric fields and existence of a threshold electric field. We investigated the non linear electrical behavior of pressed pellets of poly(3-methilthiopene) (P3MT), which were obtained through electrochemical synthesis oxidized. From the electrical measurements, in the temperature range (~9K - ~297K), the experimental results: I(V) curves, conductivity versus frequency and dielectric constant versus frequency, were compared with the several theoretical models discussed in the literature. The data obtained in the whole temperature range have shown good agreement on the tunneling theory for CDW systems (charge density wave depinning) proposed by J. Bardeen.
23

Die invloed van elektronkonsentrasie op die spindigtheidsgolfgedrag van 'n Cr+ 0.2 at.% Ir-allooi

Le Roux, Suzette Johanna 23 August 2012 (has links)
M.Sc. / The aim of this study is to show that there exists a parallelism between the effect of the concentration of the itinerant electrons per atoom, and the applied hydrostatic pressure, p, on the magnetic phase diagram of a Cr + 0.2 at.% Ir alloy. This Cr-Ir alloy was chosen, because it contains all possible magnetic phases that can exist in a Cr alloy.
24

Influence of V and Mn doping on the electrical transport properties of A Cr +1.2 at.% Ga alloy

Roro, Kittessa Tolessa 28 October 2008 (has links)
M.Sc. / Impurity resonance scattering effects are investigated in the Cr-Ga alloy system. This system has a triple point on its magnetic phase diagram where the paramagnetic (P), incommensurate (I) and commensurate (C) spin-density-wave (SDW) states co-exist. Alloying Cr with the nonmagnetic nontransitional element Ga affects the magnetic properties of Cr in a very unique way. In order to investigate the presence of resonant impurity scattering effects in binary Cr-Ga alloys, electrical resistivity measurements were carried out in the temperature range between 6 K and 85 K. The results of the investigation show: • A nonmonotonic increase in the residual resistivity of the Cr-Ga system with an increase in the Ga content, due to the presence of resonant impurity scattering of conduction electrons. • A low-temperature resistivity minimum observed in some of the Cr-Ga alloys, taken as further evidence for the presence of resonant impurity scattering effects on the conduction electrons. The impurity resonance scattering effects on the electrical resistivity of a Cr + 1.2 at.% Ga alloy, doped with V and Mn to tune the Fermi level through the impurity level, are also investigated. The investigation was complemented by thermal expansion and velocity of sound measurements in the temperature range 77 K to 450 K for the Cr + 1.2 at.% Ga alloy only. This specific Ga concentration was chosen to allow for studying resonant scattering effects in both the ISDW and CSDW phases of the system. This is possible because concentration of 1.2 at.% Ga is just above the triple point concentration. Doping with Mn to increase the electron concentration (eA) drives the alloy deeper into the CSDW phase region of the phase diagram, while doping with V, on the other hand, will drive the alloy towards the ISDW phase region. The results of the study are summarized as follows: • Two relatively sharp peaks, attributed to resonant impurity scattering effects, are observed in the curve of the residual resisitivity as a function of dopant concentration in the ISDW phase of the ternary (Cr0.988Ga0.012)1-xVx and (Cr0.988Ga0.012)1-yMny alloy systems. v • At 0 K the (Cr0.988Ga0.012)1-yMny alloy system transforms from the ISDW to the CSDW phase at y ≅ 0.0032, giving a CSDW phase for y > 0.0032. A peak is observed in the residual resistivity at about this Mn content. This peak can then either be ascribed to a jump occurring in the residual resistivity when the CSDW phase is entered from the ISDW phase or to resonant scattering effects. The conclusion is that the peak is rather related to the latter effect. • The resistivity as a function of temperature of the above two ternary alloy series show well-developed or weak minima at low temperatures for some of the samples. This is taken as further evidence of the influence of impurity resonant scattering effects on the resistivity of these alloys. • The resistivity and thermal expansion coefficient of the polycrystalline Cr0.988Ga0.012 alloy of the present study behaves anomalously close to the ISDW-CSDW phase transition temperature and warrant further investigation. The concentration-temperature magnetic phase diagram of the (Cr0.988Ga0.012)(Mn,V) alloy system was constructed from the magnetic transition temperatures obtained from electrical resistivity measurements. Theoretical analysis of the phase diagram was done using the two-band imperfect nesting model of Machida and Fujita. The results show: • A triple point at (0.21 at.% V, 225 K) where the ISDW, CSDW and P phases coexist on the magnetic phase diagram. • The curvature of all three theoretically calculated phase transition lines in the region of the triple point is of the same sign as that observed experimentally. • The theoretical fit is very good for the ISDW-P and ISDW-CSDW phase transition boundaries, while there is some discrepancy for the CSDW-P phase transition line. This may be attributed to the fact that the theory is one dimensional and that it does not include electron-hole pair breaking effects due to impurity scattering and also not effects of changes in the density of states due to alloying. / Dr. A.R.E Prinsloo Prof. H.L. Alberts
25

Exact diagonalization study of strongly correlated topological quantum states

Chen, Mengsu 04 February 2019 (has links)
A rich variety of phases can exist in quantum systems. For example, the fractional quantum Hall states have persistent topological characteristics that derive from strong interaction. This thesis uses the exact diagonalization method to investigate quantum lattice models with strong interaction. Our research topics revolve around quantum phase transitions between novel phases. The goal is to find the best schemes for realizing these novel phases in experiments. We studied the fractional Chern insulator and its transition to uni-directional stripes of particles. In addition, we studied topological Mott insulators with spontaneous time-reversal symmetry breaking induced by interaction. We also studied emergent kinetics in one-dimensional lattices with spin-orbital coupling. The exact diagonalization method and its implementation for studying these systems can easily be applied to study other strongly correlated systems. / PHD / Topological quantum states are a new type of quantum state that have properties that cannot be described by local order parameters. These types of states were first discovered in the 1980s with the integer quantum Hall effect and the fractional quantum Hall effect. In the 2000s, the predicted and experimentally discovered topological insulators triggered studies of new topological quantum states. Studies of strongly correlated systems have been a parallel research topic in condensed matter physics. When combining topological systems with strong correlation, the resulting systems can have novel properties that emerge, such as fractional charge. This thesis summarizes our work that uses the exact diagonalization method to study topological states with strong interaction.
26

Ultrafast structural dynamics in 4Hb-TaSe2 observed by femtosecond electron diffraction

Erasmus, Nicolas 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: In this thesis the structural dynamics, upon photo-excitation, of the charge-densitywave (CDW) material 4Hb-TaSe2 is investigated on the time-scale of atomic motion and simultaneously on the spatial-scale of atomic dimensions. CDW materials have been of interest since their discovery in the 1970’s because of their remarkable non-linear and anisotropic electrical properties, gigantic dielectric constants, unusual elastic properties and rich dynamical behaviour. Some of these exotic properties were extensively investigated in thermal equilibrium soon after their discovery but only recently have ultrafast techniques like femtosecond spectroscopy become available to study their out-of-equilibrium behaviour on the time-scale of atomic motion. By studying their behaviour on this time-scale a more in-depth understanding of their macroscopic properties can be gained. However, to do investigations on the atomic time-scale and simultaneously directly observe the evolution of the atomic arrangements is another challenge. One approach is through the previously mentioned technique of femtosecond pump-probe spectroscopy but converting the usual ultrashort optical probing source to an ultrashort electron or x-ray source that can diffract off the sample and reveal structural detail on the atomic level. Here, the femto-to-picosecond out-of-equilibrium behaviour upon photo-excitation in 4Hb-TaSe2 is investigated using an ultrashort electron probe source. Two variations of using an electron probe source are used: conventional scanning Femtosecond Electron Diffraction (FED) and a new approach namely Femtosecond Streaked Electron Diffraction (FSED). The more established FED technique, based on femtosecond pumpprobe spectroscopy, is used as the major investigating tool while the FSED technique, based on ultrafast streak camera technology, is an attempt at broadening the scope of available techniques to study structural dynamics in crystalline material on the subpicosecond time-scale. With these two techniques, the structural dynamics during the phase transition from the commensurate- to incommensurate-CDW phase in 4Hb-TaSe2 is observed through diffraction patterns with a temporal resolution of under 500 fs. The study reveals strong coupling between the electronic and lattice systems of the material and several time-constants of under and above a picosecond are extracted from the data. Using these time-constants, the structural evolution during the phase transition is better understood and with the newly gained knowledge, a model of all the processes involved after photo-excitation is proposed. / AFRIKAANSE OPSOMMING: In hierdie tesis word die strukturele dinamika van die lading-digtheid-golf (LDG) materiaal 4Hb-TaSe2 ondersoek op die tydskaal van atomiese bewegings en gelyktydig op die ruimtelikeskaal van atomiese dimensies. LDG materie is al van belang sedert hul ontdekking in die 1970’s as gevolg van hul merkwaardige nie-lineêre en anisotrope elektriese eienskappe, reuse diëlektriese konstantes, ongewone elastiese eienskappe en ryk dinamiese gedrag. Sommige van hierdie eksotiese eienskappe is omvattend ondersoek in termiese ewewig kort na hul ontdekking, maar eers onlangs is dit moontlik deur middle van ultravinnige tegnieke soos femtosekonde spektroskopie om hulle uit-ewewigs gedrag te bestudeer op die tydskaal van atomiese beweging. Deur die gedrag op hierdie tydskaal te bestudeer kan ’n meer insiggewende begrip van hul makroskopiese eienskappe verkry word. Om ondersoeke in te stel op die atomiese tydskaal en gelyktydig direk die evolusie van die atoom posisie te waarneem is egter ’n moeilike taak. Een benadering is deur middle van femtosekonde “pump-probe” spektroskopie maar dan die gewone optiese “probe” puls om te skakel na ’n electron of x-straal puls wat van die materiaal kan diffrak en dus strukturele inligting op die atomiese vlak kan onthul. Hier word die femto-tot-pico sekonde uit-ewewig gedrag in 4Hb-TaSe2 ondersoek met behulp van elektron pulse. Twee variasies van die gebruik van ’n elektron bron word gebruik: konvensionele “Femtosecond Electron Diffraction” (FED) en ’n nuwe benadering, naamlik, “Femtosecond Streaked Electron Diffraction” (FSED). Die meer gevestigde FED tegniek, wat gebaseer is op femtosekonde “pump-probe” spektroskopie, word gebruik as die hoof ondersoek metode terwyl die FSED tegniek, wat gebaseer is op die ultra vinnige “streak camera” tegnologie, ’n poging is om beskikbare tegnieke uit te brei wat gebruik kan word om strukturele dinamika in materie te bestudeer op die sub-picosekonde tydskaal. Met behulp van hierdie twee tegnieke, word die strukturele dinamika tydens die fase oorgang van die ooreenkomstige tot nie-ooreenkomstige LDG fase in 4Hb-TaSe2 deur diffraksie patrone met ’n tydresolusie van minder as 500 fs waargeneem. Die studie toon ’n sterk korrelasie tussen die elektroniese sisteem en kristalrooster. Verskeie tydkonstantes van onder en bo ’n picosekonde kon ook uit die data onttrek word en gebruik word om die strukturele veranderinge beter te verstaan. Hierdie nuwe kennis het ons in staat gestel om ’n model van al die betrokke prosesse voor te stel.
27

Ultrafast electron diffraction on the charge density wave compound 4Hb-TaSe2

Boshoff, Ilana 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Ultrafast electron diffraction is a powerful method to study atomic movement in crystals on sub-picosecond timescales. This thesis consists of three parts. In part one the ultrafast electron diffraction machine is described, followed by improvements that were made and techniques that were developed in order to bring the system to state of the art level and enable the acquisition of suffcient data to obtain information on the structural dynamics in crystals. The second part contains a description of the sample which was studied in our fi rst time-resolved measurements, the transition-metal dichalcogenide 4Hb-TaSe2. This particular crystal is an example of a strongly coupled electronic system which develops a charge density wave (CDW) accompanied by a periodic lattice distortion (PLD). An overview of the formation of electron diffraction patterns and what can be learned from them are also given, followed by the results of the ultrafast electron diffraction experiments done with 4Hb-TaSe2. Part three describes an alternative source to study dynamics in crystalline samples, namely laser plasma-based ultrafast X-ray diffraction. The ultrafast electron diffraction group functions as a unit, but my tasks ranged from sample preparation and characterisation of the electron beam to the setting up and execution of experiments. I was involved in analysing the data and contributed small parts to the data analysis software. / AFRIKAANSE OPSOMMING: Ultravinnige elektron diffraksie is a metode om die beweging van atome in kristalle op sub-pikosekonde tydskale te bestudeer. Hierdie tesis bestaan uit drie dele. In deel een van die tesis word die ultravinnige elektron diffraksie masjien beskryf, gevolg deur verbeteringe wat aangebring is en tegnieke wat ontwikkel is om die sisteem tot op 'n wêreldklas vlak te bring waar die insameling van genoegsame data om inligting oor die strukturele dinamika in kristalle te bekom, moontlik is. Die tweede deel bevat 'n beskrywing van die monster wat in ons eerste tydopgeloste eksperimente gebruik is, naamlik die oorgangsmetaaldichalkogenied 4Hb-TaSe2. Hierdie kristal is 'n voorbeeld van 'n sterk gekoppelde elektroniese sisteem wat 'n ladingsdigtheid-golf en 'n gepaardgaande periodiese versteuring van die kristalrooster ontwikkel. 'n Oorsig van die formasie van elektron diffraksiepatrone en wat ons daaruit kan leer word ook gegee. Daarna word die resultate van die ultravinnige elektron diffraksie eksperimente wat op 4Hb-TaSe2uitgevoer is beskryf en bespreek. In deel drie word 'n alternatiewe metode om die dinamika in kristalmonsters te bestudeer, naamlik laser plasma-gebaseerde ultravinnige X-straal diffraksie, beskryf. Die ultravinnige elektron diffraksie groep funksioneer as 'n eenheid, maar my verantwoordelikhede het gestrek van die voorbereiding van monsters en die karakterisering van die elektron bundel tot die opstel en uitvoer van eksperimente. Ek was ook betrokke by die analisering van data en het dele van die data analise sagteware geskryf.
28

The development and implementation of electromechanical devices to study the physical properties of Sr2IrO4 and TaS3

Nichols, John A 01 January 2012 (has links)
Transition metal oxides (TMO) have proven to exhibit novel properties such as high temperature superconductivity, magnetic ordering, charge and spin density waves, metal to insulator transitions and colossal magnetoresistance. Among these are a spin-orbit coupling (SOC) induced Mott insulator Sr2IrO4. The electric transport properties of this material remain finite even at cryogenic temperatures enabling its complex electronic structure to be investigated by a scanning tunneling microscope. At T = 77 K, we observed two features which represent the Mott gap with a value of 2D ~ 615 meV. Additionally an inelastic loss feature was observed inside this gap due to a single magnon excitation at an energy of ~ 125 meV. These features are consistent with similar measurements with other probes. In addition to these features, at T = 4.2 K lower energy features appear which are believed to be due to additional magnetic ordering. Another material that exhibits a unique physical behavior is the sliding charge density wave (CDW) material TaS3. It is a quasi-one dimensional material that forms long narrow ribbon shaped crystals. It exhibits anomalies including non-ohmic conductivity, a decrease in the Young’s modulus, a decrease in the shear modulus and voltage induced changes in the crystal’s overall length. In addition, we have observed the torsional piezo-like response, voltage induced torsional strain (VITS), in TaS3 which was first discovered by Pokrovskii et. al. in 2007. Our measurements were conducted with a helical resonator. The VITS response has a huge effective piezoelectric coefficient of ~ 104 cm/V. In addition we have concluded that the VITS is a very slow response with time constants of ~ 1 s near the CDW depinning threshold, that these time constants are dependent on the CDW current, and we suggest that the VITS is due to residual twists being initially present in the crystal.
29

Spin Dynamics and Magnetic Multilayers

Skubic, Björn January 2007 (has links)
<p>Theoretical studies based on first-principles theory are presented for a number of different magnetic systems. The first part of the thesis concerns spin dynamics and the second part concerns properties of magnetic multilayers. The theoretical treatment is based on electronic structure calculations performed by means of density functional theory.</p><p>A method is developed for simulating atomistic spin dynamics at finite temperatures, which is based on solving the equations of motion for the atomic spins by means of Langevin dynamics. The method relies on a mapping of the interatomic exchange interactions from density functional theory to a Heisenberg Hamiltonian. Simulations are performed for various magnetic systems and processes beyond the reach of conventional micromagnetism. As an example, magnetization dynamics in the limit of large magnetic and anisotropy fields is explored. Moreover, the method is applied to studying the dynamics of systems with complex atomic order such as the diluted magnetic semiconductor MnGaAs and the spin glass alloy CuMn. The method is also applied to a Fe thin film and a Fe/Cr/Fe trilayer system, where the limits of ultrafast switching are explored. Current induced magnetization dynamics is investigated by calculating the current induced spin-transfer torque by means of density functional theory combined with the relaxation time approximation and semi-classical Boltzmann theory. The current induced torque is calculated for the helical spin-density waves in Er and fcc Fe, where the current is found to promote a rigid rotation of the magnetic order.</p><p>Properties of magnetic multilayers composed of magnetic and nonmagnetic layers are investigated by means of the Korringa-Kohn-Rostocker interface Green's function method. Multilayer properties such as magnetic moments, interlayer exchange coupling and ordering temperatures are calculated and compared with experiments, with focus on understanding the influence of interface quality. Moreover, the influence on the interlayer exchange coupling of alloying the nonmagnetic spacer layers with small amounts of a magnetic impurity is investigated.</p>
30

OPQS – optical process and quality sensing : exemplary applications in the beerbrewing and polyurethane foaming processes

Engelhard, Sonja, Kumke, Michael U., Löhmannsröben, Hans-Gerd January 2006 (has links)
Optical methods play an important role in process analytical technologies (PAT). Four examples of optical process and quality sensing (OPQS) are presented, which are based on three important experimental techniques: near-infrared absorption, luminescence quenching, and a novel method, photon density wave (PDW) spectroscopy. These are used to evaluate four process and quality parameters related to beer brewing and polyurethane (PU) foaming processes: the ethanol content and the oxygen (O2) content in beer, the biomass in a bioreactor, and the cellular structures of PU foam produced in a pilot production plant.

Page generated in 0.0723 seconds