• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 34
  • 34
  • 21
  • 21
  • 17
  • 10
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Osteogênese in vitro a partir de células-tronco da polpa dentária humana: papel das metaloproteinases de matriz e seus inibidores. / Osteogenesis in vitro from human dental pulp stem cells: role of matrix metalloproteinases and their inhibitors.

Gasparoni, Letícia Miquelitto 04 November 2016 (has links)
Perdas ósseas são um problema de saúde pública em todo o mundo e não existem substitutos ósseos ideais. A bioengenharia óssea vem como uma nova alternativa terapêutica e é baseada em células, biomateriais e moléculas sinalizadoras. As células-tronco mesenquimais tornaram-se muito atraentes devido ao seu potencial osteogênico. Assim, é necessário o conhecimento do perfil das moléculas secretadas e dos mecanismos que as controlam tanto no estado indiferenciado como durante a osteogênese. Desta forma, nosso objetivo foi avaliar o perfil de expressão das metaloproteinases de matriz (MMPs) e seus inibidores (TIMPs e RECK) bem como sua função durante a indução da osteogênese in vitro a partir de células-tronco da polpa dentária humana (DPSCs). Algumas MMPs, principalmente, MMP-2 e MT-MMPs bem como seus inibidores, são expressos em DPSCs indiferenciadas. Durante a osteogênese, os níveis de transcritos foram modulados positivamente em relação as DPSCs indiferenciadas e os níveis protéicos das MMPs -2 e -14 estão mais elevados e relacionados a fase de mineralização. Desta forma, sugerimos que as MMPs/TIMPs/RECK desempenham funções na manutenção do estado indiferenciado das DPSCs e podem ser importantes para a osteogênese bem como a mineralização in vitro. / Bone loss is a major public health problem throughout the world and are not ideal bone substitute. Bone bioengineering comes as a new therapeutic approach and is based on cells, biomaterials and signaling molecules. Mesenchymal stem cells have become very attractive due to their osteogenic potential. Thus, knowledge of the profile of secreted molecules and mechanisms that control both undifferentiated state and during osteogenesis is required. Thus, our objective was to evaluate the expression profile of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs and RECK) and its function during induction of osteogenesis in vitro from human dental pulp stem cells (DPSCs). Some MMPs, especially MMP-2 and MT-MMPs and their inhibitors, are expressed in undifferentiated DPSCs. During osteogenesis, the levels of transcripts were positively modulated in relation undifferentiated DPSCs and protein levels of MMP -2 and -14 are higher and related to mineralization phase. Therefore, we suggest that MMPs/TIMPs/RECK may play role in the maintenance of the undifferentiated state of DPSCs and may be important for osteogenesis and mineralization in vitro.
32

Expressão gênica de moléculas da matriz extracelular e da membrana celular durante a diferenciação de células-tronco adultas da polpa dentária humana / Gene expression of extracellular matrix and cell membrane molecules during cellular differentiation from human dental pulp stem cells

Luiz Henrique Santos Silva 17 March 2014 (has links)
As células-tronco mesenquimais (MSCs) são células multipotentes que tem o potencial de se diferenciarem em várias linhagens celulares in vitro e in vivo. Estas são encontradas em nichos específicos em muitos órgãos e tecidos adultos, tais como medula óssea, tecido adiposo, músculo, dente, cordão umbilical, pele, cartilagem articular, sendo facilmente isoladas, expandidas e com alta capacidade proliferativa in vitro. Assim, estas características têm despertado grande interesse na sua utilização como uma potencial fonte de células para o reparo e regeneração tecidual de diversos órgãos e tecidos. Pouco se conhece sobre as moléculas que são secretadas pelas MSCs para a matriz extracelular (MEC) e que estão na interface célula-matriz e estão presentes em vias de transdução de sinais intracelulares. Desta forma, o objetivo deste trabalho foi avaliar o perfil de expressão gênica de enzimas que remodelam a MEC (metaloproteinases de matriz MMPs: 15 membros) e seus inibidores (inibidores teciduais das metaloproteinases de matriz TIMPs: 4 membros e RECK) e proteína da membrana plasmática (Caveolina-1) durante a diferenciação osteogenica in vitro a partir de células-tronco mesenquimais da polpa dentária humana (DPSCs). Para tanto, utilizamos polpas dentárias humanas provenientes de terceiros molares de indivíduos adultos (18-32 anos n=3) e as DPSCs isoladas foram imunofenotipadas por citometria de fluxo, avaliada a taxa de proliferação, induzidas as diferenciações osteogênica (1, 7, 14, 21 e 28 dias) e adipogênica (28 dias) e os transcritos avaliados por PCR em tempo real. Estas células foram positivas para o marcadores CD29, CD105, STRO-1, CD44, CD90 negativas os marcadores para CD31, CD45, CD34 e CD14 e são capazes de se diferenciarem em osteoblastos e adipócitos. Verificamos que as MMP-2, MMP-3, MMP-13, MMP-14, MMP-25, TIMP-3, TIMP-4 e Caveolina-1 foram diferencialmente expressas durante a diferenciação osteogênica, sendo reguladas positivamente apenas no período de 28 dias pós indução e a TIMP-1 regulada positivamente desde o primeiro dia de indução. A MMP-11 e MMP-16 não foram detectadas nas DPSCs e nem durante a diferenciação osteogênica. Desta forma, concluímos que MMPs encontradas bem como a Caveolina-1 e as TIMP-3 e TIMP-4 podem estar participando dos dos eventos de diferenciação óssea em DPSCs, a TIMP-1 pode estar participando de eventos biológicos relacionados as propriedades do estado indiferenciado das DPSCs e da diferenciação óssea e que as MMP-11 e MMP-16 não são expressas pelas DPSCs e também não estão envolvidas na diferenciação osteogênica. / Mesenchymal stem cells (MSCs) are multipotent cells that have the potential to differentiate into various cell lineages in vitro and in vivo. These are found in specific niches in many adult organs and tissues, such as bone marrow, adipose tissue, muscle, tooth, umbilical cord, skin, cartilage, being easily isolated, expanded and high proliferative capacity in vitro. Thereby, these features have attracted great interest in its use as a potential source of cells for tissue repair and regeneration of various organs and tissues. Little is known about the molecules secreted by MSCs into the extracellular matrix (ECM), present at cell-matrix interface and present on intracellular signal transduction. Thus, the aim of this study was to evaluate gene expression profile of ECM remodeling enzymes (matrix metalloproteinases MMPs: 15 members) and their inhibitors (tissue inhibitors of matrix metalloproteinases TIMPs: 4 members and RECK) and plasma membrane proteins (Caveolin-1) that participate in signaling pathways during osteogenic differentiation in vitro from human dental pulp stem cells (DPSCs). Normal human impacted third molars were collected from adults (18-32 years-old n=3) and DPSCs isolated were immunophenotyping by flow cytometry, evaluated the proliferation ratio, induced to osteogenic (1, 7, 14, 21 and 28-days) and adipogenic differentiation (28-days) and the transcript levels evaluated by Real Time PCR. These cells are positive for CD29, CD105, STRO -1, CD44, and CD90 markers and negative for CD31, CD45, CD34, and CD14 markers and are capable of differentiating into osteoblasts and adipocytes. We found that MMP- 2, MMP -3, MMP -13, MMP -14, MMP -25, TIMP-3, TIMP-4 and Caveolin-1 were differentially expressed during osteogenic differentiation, being upregulated only at 28 days post-induction and TIMP-1 upregulated from the first day of induction. MMP-11 and MMP-16 were not detected in DPSCs neither during differentiation. Thus, we conclude that MMPs, Caveolin-1 found as well as TIMP-3 and TIMP-4 may be participating in the event of bone differentiation in DPSCs, TIMP-1 may participate in biological events related to the properties of the undifferentiated state DPSCs and osteogenic differentiation, MMP-11 and MMP-16 are not also expressed by DPSCs and are not involved in osteogenic differentiation.
33

The Effects of a Pyk2 Kinase Inhibitor on the Proliferation and Differentiation of Human Dental Pulp Stem Cells

McIntyre, Patrick January 2021 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Introduction: Regenerative endodontic procedures are an effective treatment option for immature teeth with infected necrotic pulps to allow for healing and potential continued root development, yet challenges to ideal treatment outcomes remain. Consistent development of root length and width of dentin remains a challenge, as does development of the pulp-dentin complex. Previous in vitro studies have assessed the role of different growth factors and bioactive molecules in combination with scaffolds to potentially facilitate continued development of the pulp-dentin complex using dental pulp stem cells (DPSCs). The proline-rich tyrosine kinase 2 (Pyk2) is linked with osteoblast activity and the regulation of bone mass. Further, the Pyk2 inhibitor PF-4618433 (PF-46) has been shown in previous studies to enhance osteoblast activity and mineral deposition in vitro. However, whether Pyk2 targeting promotes the osteogenic differentiation of DPSCs remains unknown. Objective: The purpose of this study was to investigate the effect of a Pyk2 inhibitor, PF-46, on the proliferation, differentiation, and mineralization of human DPSCs. Materials and Methods: Human DPSCs were cultured in 24-well plates with α-MEM with 10% FBS, and containing 0 μM (vehicle control) or 0.1 μM, 0.3 μM, or 0.6 μM PF-46. Fresh media and treatments were replaced every 2-3 days. After 1 day incubation, cytotoxic effects were evaluated by using an MTS proliferation assay. After 4 days of treatment, direct cell counting was performed. To induce osteogenic differentiation, ascorbic acid and β-glycerol phosphate were added to the culture media and the DPSCs were cultured with PF-46 for 14 days. Then, an alkaline phosphatase (ALP) assay and mineral deposition assay were performed. Differences between treatment groups were analyzed by a one-way ANOVA followed by pair-wise tests conducted using Tukey’s multiple comparisons procedure with a 5% significance level. Results: The 0.6 μM PF-46 group had a significantly higher cell count, ALP activity and mineral deposition when compared to 0 μM PF-46. The 0.1 and 0.3 μM PF-46 groups also had significantly higher ALP activity compared to the 0 μM PF-46 group after 14 days of incubation. There was a general trend of increased differentiation and mineral deposition as the concentration of PF-46 increased from 0.1 μM to 0.6 μM. Conclusion: There was a general concentration-dependent increase in cell count, differentiation, and mineral deposition by human DPSCs as the concentration of PF-46 increased from 0 μM up to 0.6 μM, with the highest activity observed with 0.6 μM PF-46. Although further research is needed, these results suggest that strategies that target Pyk2 may potentially be used to improve the osteogenic differentiation of DPSCs to aid endodontic regeneration.
34

The effects of radicular dentin treated with double antibiotic paste and EDTA on dental pulp stem cell proliferation : an in-vitro study

Kim, Ki Wan January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Introduction: Regenerative endodontic therapy in immature teeth promotes continuation of root development and likely increases the prognosis of these teeth. The use of double antibiotic paste (DAP), equal parts of ciprofloxacin and metronidazole, followed by the dentin conditioner, ethylenediaminetetraacetic acid (EDTA), has been suggested for canal disinfection and facilitation of stem cell attachment/proliferation, respectively. However, the effect is unknown when all these agents are used on on radicular dentin surfaces to facilitate the level of stem cell proliferation. Objectives: The aim of this in-vitro study is to compare the proliferation of human dental pulp stem cells (hDPSCs) on human radicular dentin treated with two different concentrations of DAP followed by EDTA. Materials and Methods: Human premolars and incisors were prepared into standardized polished 4 mm x4 mm radicular dentin specimens. Groups of specimens were treated with DAP 500 mg/mL, DAP 1 mg/mL, DAP 500 mg/mL followed by 17-percent EDTA, DAP 1 mg/mL followed by 17-percent EDTA; 17% EDTA, or no treatment. All groups treated with antibiotics were incubated with DAP at 37°C for one week. All specimens were washed with distilled water. The hDPSCs were seeded across all specimens and unattached cells were collected after 24 hours. LDH assay was completed on unattached cells for quantification. Three days after attachment, WST viability and LDH cytotoxicity assays were performed. Hypothesis: There is no significant difference in hDPSC viability, unattachment, and cytotoxicity on dentin specimens treated with DAP and 17-percent EDTA. Clinical Significance: These results can be used to help identify the best treatment concentrations when using DAP and/or EDTA to promote endodontic regeneration. Results: The results demonstrated significantly less viability of hDPSCs on specimens treated with 500 mg/mL DAP with and without 17-percent EDTA. Groups treated with 1 mg/mL DAP, 1 mg/mL DAP and 17-percent EDTA, and 17-percent EDTA alone had no statistically significant difference in viability compared with control untreated dentin. The results of the unattached cells from the LDH demonstrated that cells from the specimens treated with solely 500 mg/mL and 1 mg/mL DAP had significantly higher levels of unattached cells when compared with all other groups. The LDH assays in summation with the WST assays showed a trend of a lack of proliferation on groups treated with 500 mg/mL DAP with and without 17-percent EDTA. Conclusions: Paste-like concentrations (500 mg/mL) of DAP are detrimental to hDPSC viability, whereas the present study supports the use of low-concentration antibiotics consistent with current recommendations for intracanal medicaments used during endodontic regenerative procedures.

Page generated in 0.0905 seconds