• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Copula theory and its applications in computer networks

Dong, Fang 12 July 2017 (has links)
Traffic modeling in computer networks has been researched for decades. A good model should reflect the features of real-world network traffic. With a good model, synthetic traffic data can be generated for experimental studies; network performance can be analysed mathematically; service provisioning and scheduling can be designed aligning with traffic changes. An important part of traffic modeling is to capture the dependence, either the dependence among different traffic flows or the temporal dependence within the same traffic flow. Nevertheless, the power of dependence models, especially those that capture the functional dependence, has not been fully explored in the domain of computer networks. This thesis studies copula theory, a theory to describe dependence between random variables, and applies it for better performance evaluation and network resource provisioning. We apply copula to model both contemporaneous dependence between traffic flows and temporal dependence within the same flow. The dependence models are powerful and capture the functional dependence beyond the linear scope. With numerical examples, real-world experiments and simulations, we show that copula modeling can benefit many applications in computer networks, including, for example, tightening performance bounds in statistical network calculus, capturing full dependence structure in Markov Modulated Poisson Process (MMPP), MMPP parameter estimation, and predictive resource provisioning for cloud-based composite services. / Graduate / 0984 / fdong@uvic.ca
2

Modely úhrnů škod se závislou frekvencí a severitou / Aggregate loss models with dependent frequency and severity

Čápová, Petra January 2017 (has links)
In non-life insurance, the independence between the number and size of claims is usually assumed. However, this thesis shows that the assumption of independence can be omitted. We deal with the dependency modeling between frequency and severity of claims. For including the dependence to the total claims model, we consider two methods. The first method uses generalized linear models and the second method used in the thesis is based on dependence modeling by copulas. We also perform a model with independent frequency and severity of claims. This model is compared with the described methods in the simulation part of the thesis. We include dependency on explanatory (rating) variables in all of these models. 1
3

Mesures de risque multivariées et applications en science actuarielle / Multivariate risk measures and their applications in actuarial science

Said, Khalil 02 December 2016 (has links)
L'entrée en application depuis le 1er Janvier 2016 de la réforme réglementaire européenne du secteur des assurances Solvabilité 2 est un événement historique qui va changer radicalement les pratiques en matière de gestion des risques. Elle repose sur une prise en compte importante du profil et de la vision du risque, via la possibilité d'utiliser des modèles internes pour calculer les capitaux de solvabilité et l'approche ORSA (Own Risk and Solvency Assessment) pour la gestion interne du risque. La modélisation mathématique est ainsi un outil indispensable pour réussir un exercice réglementaire. La théorie du risque doit être en mesure d'accompagner ce développement en proposant des réponses à des problématiques pratiques, liées notamment à la modélisation des dépendances et aux choix des mesures de risques. Dans ce contexte, cette thèse présente une contribution à l'amélioration de la gestion des risques actuariels. En quatre chapitres nous présentons des mesures multivariées de risque et leurs applications à l'allocation du capital de solvabilité. La première partie de cette thèse est consacrée à l'introduction et l'étude d'une nouvelle famille de mesures multivariées élicitables de risque qu'on appellera des expectiles multivariés. Son premier chapitre présente ces mesures et explique les différentes approches utilisées pour les construire. Les expectiles multivariés vérifient un ensemble de propriétés de cohérence que nous abordons aussi dans ce chapitre avant de proposer un outil d'approximation stochastique de ces mesures de risque. Les performances de cette méthode étant insuffisantes au voisinage des niveaux asymptotiques des seuils des expectiles, l'analyse théorique du comportement asymptotique est nécessaire, et fera le sujet du deuxième chapitre de cette partie. L'analyse asymptotique est effectuée dans un environnement à variations régulières multivariées, elle permet d'obtenir des résultats dans le cas des queues marginales équivalentes. Nous présentons aussi dans le deuxième chapitre le comportement asymptotique des expectiles multivariés sous les hypothèses précédentes en présence d'une dépendance parfaite, ou d'une indépendance asymptotique, et nous proposons à l'aide des statistiques des valeurs extrêmes des estimateurs de l'expectile asymptotique dans ces cas. La deuxième partie de la thèse est focalisée sur la problématique de l'allocation du capital de solvabilité en assurance. Elle est composée de deux chapitres sous forme d'articles publiés. Le premier présente une axiomatisation de la cohérence d'une méthode d'allocation du capital dans le cadre le plus général possible, puis étudie les propriétés de cohérence d'une approche d'allocation basée sur la minimisation d'indicateurs multivariés de risque. Le deuxième article est une analyse probabiliste du comportement de cette dernière approche d'allocation en fonction de la nature des distributions marginales des risques et de la structure de la dépendance. Le comportement asymptotique de l'allocation est aussi étudié et l'impact de la dépendance est illustré par différents modèles marginaux et différentes copules. La présence de la dépendance entre les différents risques supportés par les compagnies d'assurance fait de l'approche multivariée une réponse plus appropriée aux différentes problématiques de la gestion des risques. Cette thèse est fondée sur une vision multidimensionnelle du risque et propose des mesures de nature multivariée qui peuvent être appliquées pour différentes problématiques actuarielles de cette nature / The entry into force since January 1st, 2016 of Solvency 2, the European regulatory reform of insurance industry, is a historic event that will radically change the practices in risk management. It is based on taking into account the own risk profile and the internal view of risk through the ability to use internal models for calculating solvency capital requirement and ORSA (Own Risk and Solvency Assessment) approach for internal risk management. It makes the mathematical modeling an essential tool for a successful regulatory exercise. The risk theory must allow to support this development by providing answers to practical problems, especially those related to the dependence modeling and the choice of risk measures. In the same context, this thesis presents a contribution to improving the management of insurance risks. In four chapters we present multivariate risk measures and their application to the allocation of solvency capital. The first part of this thesis is devoted to the introduction and study of a new family of multivariate elicitable risk measures that we will call multivariate expectiles. The first chapter presents these measures and explains the different construction approaches. The multivariate expectiles verify a set of coherence properties that we also discuss in this chapter before proposing a stochastic approximation tool of these risk measures. The performance of this method is insufficient in the asymptotic levels of the expectiles thresholds. That makes the theoretical analysis of the asymptotic behavior necessary. The asymptotic behavior of multivariate expectiles is then the subject of the second chapter of this part. It is studied in a multivariate regular variations framework, and some results are given in the case of equivalent marginal tails. We also study in the second chapter of the first part the asymptotic behavior of multivariate expectiles under previous assumptions in the presence of a perfect dependence, or in the case of asymptotic independence. Finally, we propose using extreme values statistics some estimators of the asymptotic expectile in these cases. The second part of the thesis is focused on the issue of solvency capital allocation in insurance. It is divided into two chapters; each chapter consists of a published paper. The first one presents an axiomatic characterization of the coherence of a capital allocation method in a general framework. Then it studies the coherence properties of an allocation approach based on the minimization of some multivariate risk indicators. The second paper is a probabilistic analysis of the behavior of this capital allocation method based on the nature of the marginal distributions of risks and the dependence structure. The asymptotic behavior of the optimal allocation is also studied and the impact of dependence is illustrated using some selected models and copulas. Faced to the significant presence of dependence between the various risks taken by insurance companies, a multivariate approach seems more appropriate to build responses to the various issues of risk management. This thesis is based on a multidimensional vision of risk and proposes some multivariate risk measures that can be applied to several actuarial issues of a multivariate nature

Page generated in 0.0755 seconds