• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimalizace modelu řízení zásob v Rhiag Group / Optimization of inventory management in Rhiag Group

Konečný, Jan January 2015 (has links)
The thesis deals with inventory management in Rhiag Group. It is particularly focused on enhancement of model which is used for relocation of goods within the group. Purpose of this model is to improve allocation efficiency measured by items write-off value. Initially, author describes making of database which enables quantifying benefits of relocation, followed by testing of optimal relocation algorithm settings and determinig maximal delivery values for each relocation flow. In conclusion, optimal parameters of the model are recommended and benefits for Rhiag Group are estimated.
2

Modèles de dépendance dans la théorie du risque

Bargès, Mathieu 15 March 2010 (has links) (PDF)
Initialement, la théorie du risque supposait l'indépendance entre les différentes variables aléatoires et autres paramètres intervenant dans la modélisation actuarielle. De nos jours, cette hypothèse d'indépendance est souvent relâchée afin de tenir compte de possibles interactions entre les différents éléments des modèles. Dans cette thèse, nous proposons d'introduire des modèles de dépendance pour différents aspects de la théorie du risque. Dans un premier temps, nous suggérons l'emploi des copules comme structure de dépendance. Nous abordons tout d'abord un problème d'allocation de capital basée sur la Tail-Value-at-Risk pour lequel nous supposons un lien introduit par une copule entre les différents risques. Nous obtenons des formules explicites pour le capital à allouer à l'ensemble du portefeuille ainsi que la contribution de chacun des risques lorsque nous utilisons la copule Farlie-Gumbel-Morgenstern. Pour les autres copules, nous fournissons une méthode d'approximation. Au deuxième chapitre, nous considérons le processus aléatoire de la somme des valeurs présentes des sinistres pour lequel les variables aléatoires du montant d'un sinistre et de temps écoulé depuis le sinistre précédent sont liées par une copule Farlie-Gumbel-Morgenstern. Nous montrons comment obtenir des formes explicites pour les deux premiers moments puis le moment d'ordre m de ce processus. Le troisième chapitre suppose un autre type de dépendance causée par un environnement extérieur. Dans le contexte de l'étude de la probabilité de ruine d'une compagnie de réassurance, nous utilisons un environnement markovien pour modéliser les cycles de souscription. Nous supposons en premier lieu des temps de changement de phases de cycle déterministes puis nous les considérons ensuite influencés en retour par les montants des sinistres. Nous obtenons, à l'aide de la méthode d'erlangisation, une approximation de la probabilité de ruine en temps fini.
3

Modèles de dépendance dans la théorie du risque / Dependence models in risk theory

Bargès, Mathieu 15 March 2010 (has links)
Initialement, la théorie du risque supposait l’indépendance entre les différentes variables aléatoires et autres paramètres intervenant dans la modélisation actuarielle. De nos jours, cette hypothèse d’indépendance est souvent relâchée afin de tenir compte de possibles interactions entre les différents éléments des modèles. Dans cette thèse, nous proposons d’introduire des modèles de dépendance pour différents aspects de la théorie du risque. Dans un premier temps, nous suggérons l’emploi des copules comme structure de dépendance. Nous abordons tout d’abord un problème d’allocation de capital basée sur la Tail-Value-at-Risk pour lequel nous supposons un lien introduit par une copule entre les différents risques. Nous obtenons des formules explicites pour le capital à allouer à l’ensemble du portefeuille ainsi que la contribution de chacun des risques lorsque nous utilisons la copule Farlie-Gumbel-Morgenstern. Pour les autres copules, nous fournissons une méthode d’approximation. Au deuxième chapitre, nous considérons le processus aléatoire de la somme des valeurs présentes des sinistres pour lequel les variables aléatoires du montant d’un sinistre et de temps écoulé depuis le sinistre précédent sont liées par une copule Farlie-Gumbel-Morgenstern. Nous montrons comment obtenir des formes explicites pour les deux premiers moments puis le moment d’ordre m de ce processus. Le troisième chapitre suppose un autre type de dépendance causée par un environnement extérieur. Dans le contexte de l’étude de la probabilité de ruine d’une compagnie de réassurance, nous utilisons un environnement markovien pour modéliser les cycles de souscription. Nous supposons en premier lieu des temps de changement de phases de cycle déterministes puis nous les considérons ensuite influencés en retour par les montants des sinistres. Nous obtenons, à l’aide de la méthode d’erlangisation, une approximation de la probabilité de ruine en temps fini. / Initially, it was supposed in risk theory that the random variables and other parameters of actuarial models were independent. Nowadays, this hypothesis is often relaxed to take into account possible interactions. In this thesis, we propose to introduce some dependence models for different aspects of risk theory. In a first part, we use copulas as dependence structure. We first tackle a problem of capital allocation based on the Tail-Value-at-Risk where the risks are supposed to be dependent according to a copula. We obtain explicit formulas for the capital to be allocated to the overall portfolio but also for the contribution of each risk when we use a Farlie-Gumbel-Morenstern copula. For the other copulas, we give an approximation method. In the second chapter, we consider the stochastic process of the discounted aggregate claims where the random variables for the claim amount and the time since the last claim are linked by a Farlie-Gumbel-Morgenstern copula. We show how to obtain exact expressions for the first two moments and for the moment of order m of the process. The third chapter assumes another type of dependence that is caused by an external environment. In the context of the study of the ruin probability for a reinsurance company, we use a Markovian environment to model the underwriting cycles. We suppose first deterministic cycle phase changes and then that these changes can also be influenced by the claim amounts. We use the erlangization method to obtain an approximation for the finite time ruin probability.
4

Impact of financial Frictions on international Trade in Brazil and emerging Countries / Impact des contraintes financières sur le commerce international au Brésil et dans les pays émergents

Bouattour, Fatma 25 March 2016 (has links)
Ce travail a pour but d’approfondir l’analyse des effets des contraintes de financement sur le commerce international, en portant une attention particulière aux pays BRICS, notamment le Brésil. Cette thèse comporte trois chapitres. Le premier chapitre évalue la vulnérabilité financière des secteurs manufacturiers brésiliens dans les années 2000, en se basant sur le travail de Rajan et Zingales (1998). Ce chapitre souligne l’importance du développement financier et des crédits publics dans l’allocation intersectorielle du capital au Brésil. Le deuxième chapitre étudie les effets des contraintes financières sur les exportations des firmes brésiliennes, dans le cadre théorique de firmes hétérogènes (Manova, 2013). Il s’agit de repenser le lien entre la taille et les performances d’exportation, en présence de contraintes financières au niveau sectoriel. Ce chapitre montre l’importance des difficultés d’accès au crédit au Brésil dans l’explication des performances d’exportation. Le troisième chapitre étudie les effets du développement financier sur les exportations vers les BRICS, avec un intérêt particulier pour les effets de la crise financière de 2008. Ce chapitre confirme l’importance du développement financier comme source d’avantage comparatif dans les secteurs dépendants de la finance externe. Cet avantage lié au développement financier perd de son importance pendant la crise. Les résultats confirment l’importance du canal financier de transmission de la crise. / This thesis aims at deepening the analysis of the effects of financial constraints on international trade performances, with a focus on the BRICS countries, notably Brazil. This thesis includes three chapters. The first chapter aims at evaluating the level of financial vulnerability of Brazilian manufacturing sectors in the 2000s, based on the work of Rajan and Zingales (1998). This chapter stresses the importance of the financial development and of public credits in causing the inter-sectoral capital misallocation. The second chapter focuses on the link between financial constraints and the performances of Brazilian exporters, in a framework of heterogeneous firms as in Manova (2013). Specifically, I revisit the link between firm size and firm exports by focusing on the financial constraints at sector-level. Findings emphasize the importance of problems of access to credit in Brazil, in explaining Brazilian firms’ export performances. The third chapter analyzes the effects of financial development in exporting countries on their exports to BRICS countries, with a focus on the recent financial crisis effects. Results confirm the role of financial development as a source of comparative advantage in sectors with high reliance on external finance. The positive effect related to financial development is lessened during the crisis. This confirms the importance of the trade finance transmission channel of the crisis.
5

Mesures de risque multivariées et applications en science actuarielle / Multivariate risk measures and their applications in actuarial science

Said, Khalil 02 December 2016 (has links)
L'entrée en application depuis le 1er Janvier 2016 de la réforme réglementaire européenne du secteur des assurances Solvabilité 2 est un événement historique qui va changer radicalement les pratiques en matière de gestion des risques. Elle repose sur une prise en compte importante du profil et de la vision du risque, via la possibilité d'utiliser des modèles internes pour calculer les capitaux de solvabilité et l'approche ORSA (Own Risk and Solvency Assessment) pour la gestion interne du risque. La modélisation mathématique est ainsi un outil indispensable pour réussir un exercice réglementaire. La théorie du risque doit être en mesure d'accompagner ce développement en proposant des réponses à des problématiques pratiques, liées notamment à la modélisation des dépendances et aux choix des mesures de risques. Dans ce contexte, cette thèse présente une contribution à l'amélioration de la gestion des risques actuariels. En quatre chapitres nous présentons des mesures multivariées de risque et leurs applications à l'allocation du capital de solvabilité. La première partie de cette thèse est consacrée à l'introduction et l'étude d'une nouvelle famille de mesures multivariées élicitables de risque qu'on appellera des expectiles multivariés. Son premier chapitre présente ces mesures et explique les différentes approches utilisées pour les construire. Les expectiles multivariés vérifient un ensemble de propriétés de cohérence que nous abordons aussi dans ce chapitre avant de proposer un outil d'approximation stochastique de ces mesures de risque. Les performances de cette méthode étant insuffisantes au voisinage des niveaux asymptotiques des seuils des expectiles, l'analyse théorique du comportement asymptotique est nécessaire, et fera le sujet du deuxième chapitre de cette partie. L'analyse asymptotique est effectuée dans un environnement à variations régulières multivariées, elle permet d'obtenir des résultats dans le cas des queues marginales équivalentes. Nous présentons aussi dans le deuxième chapitre le comportement asymptotique des expectiles multivariés sous les hypothèses précédentes en présence d'une dépendance parfaite, ou d'une indépendance asymptotique, et nous proposons à l'aide des statistiques des valeurs extrêmes des estimateurs de l'expectile asymptotique dans ces cas. La deuxième partie de la thèse est focalisée sur la problématique de l'allocation du capital de solvabilité en assurance. Elle est composée de deux chapitres sous forme d'articles publiés. Le premier présente une axiomatisation de la cohérence d'une méthode d'allocation du capital dans le cadre le plus général possible, puis étudie les propriétés de cohérence d'une approche d'allocation basée sur la minimisation d'indicateurs multivariés de risque. Le deuxième article est une analyse probabiliste du comportement de cette dernière approche d'allocation en fonction de la nature des distributions marginales des risques et de la structure de la dépendance. Le comportement asymptotique de l'allocation est aussi étudié et l'impact de la dépendance est illustré par différents modèles marginaux et différentes copules. La présence de la dépendance entre les différents risques supportés par les compagnies d'assurance fait de l'approche multivariée une réponse plus appropriée aux différentes problématiques de la gestion des risques. Cette thèse est fondée sur une vision multidimensionnelle du risque et propose des mesures de nature multivariée qui peuvent être appliquées pour différentes problématiques actuarielles de cette nature / The entry into force since January 1st, 2016 of Solvency 2, the European regulatory reform of insurance industry, is a historic event that will radically change the practices in risk management. It is based on taking into account the own risk profile and the internal view of risk through the ability to use internal models for calculating solvency capital requirement and ORSA (Own Risk and Solvency Assessment) approach for internal risk management. It makes the mathematical modeling an essential tool for a successful regulatory exercise. The risk theory must allow to support this development by providing answers to practical problems, especially those related to the dependence modeling and the choice of risk measures. In the same context, this thesis presents a contribution to improving the management of insurance risks. In four chapters we present multivariate risk measures and their application to the allocation of solvency capital. The first part of this thesis is devoted to the introduction and study of a new family of multivariate elicitable risk measures that we will call multivariate expectiles. The first chapter presents these measures and explains the different construction approaches. The multivariate expectiles verify a set of coherence properties that we also discuss in this chapter before proposing a stochastic approximation tool of these risk measures. The performance of this method is insufficient in the asymptotic levels of the expectiles thresholds. That makes the theoretical analysis of the asymptotic behavior necessary. The asymptotic behavior of multivariate expectiles is then the subject of the second chapter of this part. It is studied in a multivariate regular variations framework, and some results are given in the case of equivalent marginal tails. We also study in the second chapter of the first part the asymptotic behavior of multivariate expectiles under previous assumptions in the presence of a perfect dependence, or in the case of asymptotic independence. Finally, we propose using extreme values statistics some estimators of the asymptotic expectile in these cases. The second part of the thesis is focused on the issue of solvency capital allocation in insurance. It is divided into two chapters; each chapter consists of a published paper. The first one presents an axiomatic characterization of the coherence of a capital allocation method in a general framework. Then it studies the coherence properties of an allocation approach based on the minimization of some multivariate risk indicators. The second paper is a probabilistic analysis of the behavior of this capital allocation method based on the nature of the marginal distributions of risks and the dependence structure. The asymptotic behavior of the optimal allocation is also studied and the impact of dependence is illustrated using some selected models and copulas. Faced to the significant presence of dependence between the various risks taken by insurance companies, a multivariate approach seems more appropriate to build responses to the various issues of risk management. This thesis is based on a multidimensional vision of risk and proposes some multivariate risk measures that can be applied to several actuarial issues of a multivariate nature
6

On some aspects of coherent risk measures and their applications

Assa, Hirbod 07 1900 (has links)
Le sujet principal de cette thèse porte sur les mesures de risque. L'objectif général est d'investiguer certains aspects des mesures de risque dans les applications financières. Le cadre théorique de ce travail est celui des mesures cohérentes de risque telle que définie dans Artzner et al (1999). Mais ce n'est pas la seule classe de mesure du risque que nous étudions. Par exemple, nous étudions aussi quelques aspects des "statistiques naturelles de risque" (en anglais natural risk statistics) Kou et al (2006) et des mesures convexes du risque Follmer and Schied(2002). Les contributions principales de cette thèse peuvent être regroupées selon trois axes: allocation de capital, évaluation des risques et capital requis et solvabilité. Dans le chapitre 2 nous caractérisons les mesures de risque avec la propriété de Lebesgue sur l'ensemble des processus bornés càdlàg (continu à droite, limité à gauche). Cette caractérisation nous permet de présenter deux applications dans l'évaluation des risques et l'allocation de capital. Dans le chapitre 3, nous étendons la notion de statistiques naturelles de risque à l'espace des suites infinies. Cette généralisation nous permet de construire de façon cohérente des mesures de risque pour des bases de données de n'importe quelle taille. Dans le chapitre 4, nous discutons le concept de "bonnes affaires" (en anglais Good Deals), pour notamment caractériser les situations du marché où ces positions pathologiques sont présentes. Finalement, dans le chapitre 5, nous essayons de relier les trois chapitres en étendant la définition de "bonnes affaires" dans un cadre plus large qui comprendrait les mesures de risque analysées dans les chapitres 2 et 3. / The aim of this thesis is to study several aspects of risk measures particularly in the context of financial applications. The primary framework that we use is that of coherent risk measures as defined in Artzner et al (1999). But this is not the only class of risk measures that we study here. We also investigate the concepts of natural risk statistics Kou et al (2006) and convex risk measure Follmer/ and Schied (2002). The main contributions of this Thesis can be classified in three main axes: Capital allocation, risk measurement and capital requirement and solvency. In chapter 2, we characterize risk measures with the Lebesgue property on bounded càdlàg processes. This allows to present two applications in risk assessment and capital allocation. In chapter 3, we extend the concept of natural risk statistics to the space of infinite sequences. This has been done in order to introduce a consistent way of constructing risk measures for data bases of any size. In chapter 4, we discuss the concept of Good Deals and how to deal with a situation where these pathological positions are present in the market. Finally, in chapter 5, we try to relate all three chapters by extending the definition of Good Deals to a larger set of risk measures that somehow includes the discussions in chapters 2 and 3.
7

On some aspects of coherent risk measures and their applications

Assa, Hirbod 07 1900 (has links)
Le sujet principal de cette thèse porte sur les mesures de risque. L'objectif général est d'investiguer certains aspects des mesures de risque dans les applications financières. Le cadre théorique de ce travail est celui des mesures cohérentes de risque telle que définie dans Artzner et al (1999). Mais ce n'est pas la seule classe de mesure du risque que nous étudions. Par exemple, nous étudions aussi quelques aspects des "statistiques naturelles de risque" (en anglais natural risk statistics) Kou et al (2006) et des mesures convexes du risque Follmer and Schied(2002). Les contributions principales de cette thèse peuvent être regroupées selon trois axes: allocation de capital, évaluation des risques et capital requis et solvabilité. Dans le chapitre 2 nous caractérisons les mesures de risque avec la propriété de Lebesgue sur l'ensemble des processus bornés càdlàg (continu à droite, limité à gauche). Cette caractérisation nous permet de présenter deux applications dans l'évaluation des risques et l'allocation de capital. Dans le chapitre 3, nous étendons la notion de statistiques naturelles de risque à l'espace des suites infinies. Cette généralisation nous permet de construire de façon cohérente des mesures de risque pour des bases de données de n'importe quelle taille. Dans le chapitre 4, nous discutons le concept de "bonnes affaires" (en anglais Good Deals), pour notamment caractériser les situations du marché où ces positions pathologiques sont présentes. Finalement, dans le chapitre 5, nous essayons de relier les trois chapitres en étendant la définition de "bonnes affaires" dans un cadre plus large qui comprendrait les mesures de risque analysées dans les chapitres 2 et 3. / The aim of this thesis is to study several aspects of risk measures particularly in the context of financial applications. The primary framework that we use is that of coherent risk measures as defined in Artzner et al (1999). But this is not the only class of risk measures that we study here. We also investigate the concepts of natural risk statistics Kou et al (2006) and convex risk measure Follmer/ and Schied (2002). The main contributions of this Thesis can be classified in three main axes: Capital allocation, risk measurement and capital requirement and solvency. In chapter 2, we characterize risk measures with the Lebesgue property on bounded càdlàg processes. This allows to present two applications in risk assessment and capital allocation. In chapter 3, we extend the concept of natural risk statistics to the space of infinite sequences. This has been done in order to introduce a consistent way of constructing risk measures for data bases of any size. In chapter 4, we discuss the concept of Good Deals and how to deal with a situation where these pathological positions are present in the market. Finally, in chapter 5, we try to relate all three chapters by extending the definition of Good Deals to a larger set of risk measures that somehow includes the discussions in chapters 2 and 3.
8

On the design of customized risk measures in insurance, the problem of capital allocation and the theory of fluctuations for Lévy processes

Omidi Firouzi, Hassan 12 1900 (has links)
No description available.

Page generated in 0.0861 seconds