Spelling suggestions: "subject:"depependent processes"" "subject:"dependendent processes""
1 |
考慮兩階段相依製程下量測誤差對指數加權移動平均管制圖之效應研究 / Effects of Measurement Error on EWMA Control Charts for Two-Step Process何漢葳, Ho, Han-Wei Unknown Date (has links)
無 / In this article, a two-step process is considered to investigate the effects of measurement errors on EWMA
and cause-selecting EWMA control charts. At the end of current process, a pair of imprecise measurements of in-coming quality and out-going quality is randomly taken with individual units.
The linear relationship between in-coming quality and out-going quality is assumed and four possible states of the process are defined with respective distributions of in-coming and out-going
qualities derived. The EWMA control chart with measurement error is then constructed to monitor small-scale shift in mean for the previous process while the cause-selecting control chart, or EWMA control chart based on residuals, including measurement error, is proposed to diagnose the state of current process.
Based on sensitivity analysis, the presence of imprecise measurement diminishes the power of both the EWMA and the proposed control charts and affects the detectability of process disturbances. Further, applications of proposed control charts are demonstrated through a numerical example to show some possible misuses of control charts. If the process mean shifts in a small scale when a single assignable cause occurs on each step, the proposed cause-selecting control chart is more sensitive than other control charts. The Hotelling T^2 control chart is also compared to illustrate the diagnostic advantage outweighed by proposed cause-selecting control chart.
|
2 |
Time-dependence in Markovian decision processes.McMahon, Jeremy James January 2008 (has links)
The main focus of this thesis is Markovian decision processes with an emphasis on incorporating time-dependence into the system dynamics. When considering such decision processes, we provide value equations that apply to a large range of classes of Markovian decision processes, including Markov decision processes (MDPs) and semi-Markov decision processes (SMDPs), time-homogeneous or otherwise. We then formulate a simple decision process with exponential state transitions and solve this decision process using two separate techniques. The first technique solves the value equations directly, and the second utilizes an existing continuous-time MDP solution technique. To incorporate time-dependence into the transition dynamics of the process, we examine a particular decision process with state transitions determined by the Erlang distribution. Although this process is originally classed as a generalized semi-Markov decision process, we re-define it as a time-inhomogeneous SMDP. We show that even for a simply stated process with desirable state-space properties, the complexity of the value equations becomes so substantial that useful analytic expressions for the optimal solutions for all states of the process are unattainable. We develop a new technique, utilizing phase-type (PH) distributions, in an effort to address these complexity issues. By using PH representations, we construct a new state-space for the process, referred to as the phase-space, incorporating the phases of the state transition probability distributions. In performing this step, we effectively model the original process as a continuous-time MDP. The information available in this system is, however, richer than that of the original system. In the interest of maintaining the physical characteristics of the original system, we define a new valuation technique for the phase-space that shields some of this information from the decision maker. Using the process of phase-space construction and our valuation technique, we define an original system of value equations for this phasespace that are equivalent to those for the general Markovian decision processes mentioned earlier. An example of our own phase-space technique is given for the aforementioned Erlang decision process and we identify certain characteristics of the optimal solution such that, when applicable, the implementation of our phase-space technique is greatly simplified. These newly defined value equations for the phase-space are potentially as complex to solve as those defined for the original model. Restricting our focus to systems with acyclic state-spaces though, we describe a top-down approach to solution of the phase-space value equations for more general processes than those considered thus far. Again, we identify characteristics of the optimal solution to look for when implementing this technique and provide simplifications of the value equations where these characteristics are present. We note, however, that it is almost impossible to determine a priori the class of processes for which the simplifications outlined in our phase-space technique will be applicable. Nevertheless, we do no worse in terms of complexity by utilizing our phase-space technique, and leave open the opportunity to simplify the solution process if an appropriate situation arises. The phase-space technique can handle time-dependence in the state transition probabilities, but is insufficient for any process with time-dependent reward structures or discounting. To address such decision processes, we define an approximation technique for the solution of the class of infinite horizon decision processes whose state transitions and reward structures are described with reference to a single global clock. This technique discretizes time into exponentially distributed length intervals and incorporates this absolute time information into the state-space. For processes where the state-transitions are not exponentially distributed, we use the hazard rates of the transition probability distributions evaluated at the discrete time points to model the transition dynamics of the system. We provide a suitable reward structure approximation using our discrete time points and guidelines for sensible truncation, using an MDP approximation to the tail behaviour of the original infinite horizon process. The result is a finite-state time-homogeneous MDP approximation to the original process and this MDP may be solved using standard existing solution techniques. The approximate solution to the original process can then be inferred from the solution to our MDP approximation. / Thesis (Ph.D.) -- University of Adelaide, School of Mathematical Sciences, 2008
|
3 |
Team TrustCosta, Ana-Cristina, Anderson, Neil 05 June 2020 (has links)
No / This chapter seeks to clarify the definition of trust and its conceptualization specifically at the team or workgroup level, as well as discussing the similarities and differences between interpersonal and team level trust. Research on interpersonal trust has shown that individual perceptions of others trustworthiness and their willingness to engage in trusting behavior when interacting with them are largely history‐dependent processes. Thus, trust between two or more interdependent individuals develops as a function of their cumulative interaction. The chapter describes a multilevel framework with individual, team and organizational level determinants and outcomes of team trust. It aims to clarify core variables and processes underlying team trust and to develop a better understanding of how these phenomena operate in a system involving the individual team members, the team self and the organizational contexts in which the team operates. The chapter concludes by reviewing and proposing a number of directions for future research and future‐oriented methodological recommendations.
|
4 |
Contribution à la modélisation spatiale des événements extrêmes / Contributions to modeling spatial extremal events and applicationsBassene, Aladji 06 May 2016 (has links)
Dans cette de thèse, nous nous intéressons à la modélisation non paramétrique de données extrêmes spatiales. Nos résultats sont basés sur un cadre principal de la théorie des valeurs extrêmes, permettant ainsi d’englober les lois de type Pareto. Ce cadre permet aujourd’hui d’étendre l’étude des événements extrêmes au cas spatial à condition que les propriétés asymptotiques des estimateurs étudiés vérifient les conditions classiques de la Théorie des Valeurs Extrêmes (TVE) en plus des conditions locales sur la structure des données proprement dites. Dans la littérature, il existe un vaste panorama de modèles d’estimation d’événements extrêmes adaptés aux structures des données pour lesquelles on s’intéresse. Néanmoins, dans le cas de données extrêmes spatiales, hormis les modèles max stables,il n’en existe que peu ou presque pas de modèles qui s’intéressent à l’estimation fonctionnelle de l’indice de queue ou de quantiles extrêmes. Par conséquent, nous étendons les travaux existants sur l’estimation de l’indice de queue et des quantiles dans le cadre de données indépendantes ou temporellement dépendantes. La spécificité des méthodes étudiées réside sur le fait que les résultats asymptotiques des estimateurs prennent en compte la structure de dépendance spatiale des données considérées, ce qui est loin d’être trivial. Cette thèse s’inscrit donc dans le contexte de la statistique spatiale des valeurs extrêmes. Elle y apporte trois contributions principales. • Dans la première contribution de cette thèse permettant d’appréhender l’étude de variables réelles spatiales au cadre des valeurs extrêmes, nous proposons une estimation de l’indice de queue d’une distribution à queue lourde. Notre approche repose sur l’estimateur de Hill (1975). Les propriétés asymptotiques de l’estimateur introduit sont établies lorsque le processus spatial est adéquatement approximé par un processus M−dépendant, linéaire causal ou lorsqu'il satisfait une condition de mélange fort (a-mélange). • Dans la pratique, il est souvent utile de lier la variable d’intérêt Y avec une co-variable X. Dans cette situation, l’indice de queue dépend de la valeur observée x de la co-variable X et sera appelé indice de queue conditionnelle. Dans la plupart des applications, l’indice de queue des valeurs extrêmes n’est pas l’intérêt principal et est utilisé pour estimer par exemple des quantiles extrêmes. La contribution de ce chapitre consiste à adapter l’estimateur de l’indice de queue introduit dans la première partie au cadre conditionnel et d’utiliser ce dernier afin de proposer un estimateur des quantiles conditionnels extrêmes. Nous examinons les modèles dits "à plan fixe" ou "fixed design" qui correspondent à la situation où la variable explicative est déterministe et nous utlisons l’approche de la fenêtre mobile ou "window moving approach" pour capter la co-variable. Nous étudions le comportement asymptotique des estimateurs proposés et donnons des résultats numériques basés sur des données simulées avec le logiciel "R". • Dans la troisième partie de cette thèse, nous étendons les travaux de la deuxième partie au cadre des modèles dits "à plan aléatoire" ou "random design" pour lesquels les données sont des observations spatiales d’un couple (Y,X) de variables aléatoires réelles. Pour ce dernier modèle, nous proposons un estimateur de l’indice de queue lourde en utilisant la méthode des noyaux pour capter la co-variable. Nous utilisons un estimateur de l’indice de queue conditionnelle appartenant à la famille de l’estimateur introduit par Goegebeur et al. (2014b). / In this thesis, we investigate nonparametric modeling of spatial extremes. Our resultsare based on the main result of the theory of extreme values, thereby encompass Paretolaws. This framework allows today to extend the study of extreme events in the spatialcase provided if the asymptotic properties of the proposed estimators satisfy the standardconditions of the Extreme Value Theory (EVT) in addition to the local conditions on thedata structure themselves. In the literature, there exists a vast panorama of extreme events models, which are adapted to the structures of the data of interest. However, in the case ofextreme spatial data, except max-stables models, little or almost no models are interestedin non-parametric estimation of the tail index and/or extreme quantiles. Therefore, weextend existing works on estimating the tail index and quantile under independent ortime-dependent data. The specificity of the methods studied resides in the fact that theasymptotic results of the proposed estimators take into account the spatial dependence structure of the relevant data, which is far from trivial. This thesis is then written in thecontext of spatial statistics of extremes. She makes three main contributions.• In the first contribution of this thesis, we propose a new approach of the estimatorof the tail index of a heavy-tailed distribution within the framework of spatial data. This approach relies on the estimator of Hill (1975). The asymptotic properties of the estimator introduced are established when the spatial process is adequately approximated by aspatial M−dependent process, spatial linear causal process or when the process satisfies a strong mixing condition.• In practice, it is often useful to link the variable of interest Y with covariate X. Inthis situation, the tail index depends on the observed value x of the covariate X and theunknown fonction (.) will be called conditional tail index. In most applications, the tailindexof an extreme value is not the main attraction, but it is used to estimate for instance extreme quantiles. The contribution of this chapter is to adapt the estimator of the tail index introduced in the first part in the conditional framework and use it to propose an estimator of conditional extreme quantiles. We examine the models called "fixed design"which corresponds to the situation where the explanatory variable is deterministic. To tackle the covariate, since it is deterministic, we use the window moving approach. Westudy the asymptotic behavior of the estimators proposed and some numerical resultsusing simulated data with the software "R".• In the third part of this thesis, we extend the work of the second part of the framemodels called "random design" for which the data are spatial observations of a pair (Y,X) of real random variables . In this last model, we propose an estimator of heavy tail-indexusing the kernel method to tackle the covariate. We use an estimator of the conditional tail index belonging to the family of the estimators introduced by Goegebeur et al. (2014b).
|
Page generated in 0.0862 seconds