• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and Manufacturing of a Composite Bi-Stable Boom for Small Satellites

Herlem, Florian January 2014 (has links)
Thin cylindrical shell structures may provide an interesting breakthrough for deployable structures for small satellites. Its bi-stable behaviour allows two different stable configurations: coiled and deployed. Several projects worldwide are using tape springs for satellites and for the SEAM project, at KTH, 1 meter long tape springs will be used for booms. This thesis investigates the energy stored inside the tape spring according to its layup configuration and the different fiber orientations. With a thickness around 0.3 mm and a length of one meter, the booms will deploy sensors with a quite low deployment speed in order to minimize the shick load during the deployment phase. A Matlab code is written to compare the stored strain energy. Another aim is to find an adequate layout all along the tape spring, it means change the fiber orientation to decrease the energy released, but also generating main manufacturing issue.
2

Modelling and Manufacturing of a Composite Bi-Stable Boom for Small Satellites

Herlem, Florian January 2014 (has links)
Thin cylindrical shell structures may provide an interesting breakthrough for deployable  structures for small satellites. Its bi-stable behaviour allows two different stable configurations: coiled and deployed. Several projects worldwide are using tape springs for satellites and for the SEAM project, at KTH, 1 meter long tape springs will be used for booms. This thesis investigates the energy stored inside the tape spring according to its layup configuration and the different fiber orientations. With a thickness around 0.3 mm and a length of one meter, the booms will deploy sensors with a quite low deployment speed in order to minimize the shock load during the deployment phase. A Matlab code is written to compare the stored strain energy. Another aim is to find an adequate layup all along the tape spring, it means change the fiber orientation to decrease the energy released, but also generating main manufacturing issue.
3

Numerical and Experimental Studies of Deployment Dynamics of Space Webs and CubeSat Booms

Mao, Huina January 2017 (has links)
In this thesis, experiments and simulations are performed to study the deployment dynamics of space webs and space booms, focusing on the deployment and stabilization phases of the space web and the behavior of the bi-stable tape spring booms after long-term stowage. The space web, Suaineadh, was launched onboard the sounding rocket REXUS-12 from the Swedish launch base Esrange in Kiruna on 19 March 2012. It served as a technology demonstrator for a space web. A reaction wheel was used to actively control the deployment and stabilization states of the 2×2 m2 space web. After ejection from the rocket, the web was deployed but entanglements occurred since the web did not start to deploy at the specified angular velocity. The deployment dynamics was reconstructed by simulations from the information recorded by inertial measurement units and cameras. Simulations show that if the web would have started to deploy at the specified angular velocity, the web would most likely have been deployed and stabilized in space by the motor, reaction wheel and controller used in the experiment. A modified control method was developed to stabilize the out-of-plane motions before or during deployment. New web arms with tape springs were proposed to avoid entanglements. A deployable booms assembly composed of four 1-m long bi-stable glass fiber tape springs was designed for the electromagnetically clean 3U CubeSat Small Explorer for Advanced Missions (SEAM). The deployment dynamics and reliability of the SEAM boom design after long-term stowage were tested by on-ground experiments. A simple analytical model was developed to predict the deployment dynamics and to assess the effects of the GOLS and the combined effects of friction, viscoelastic strain energy relaxation, and other factors that act to decrease the deployment force. In order to mitigate the viscoelastic effects and thus ensure self-deployment, different tape springs were designed, manufactured and tested. A numerical model was used to assess the long-term stowage effects on the deployment capability of bi-stable tape springs including the friction, nonlinear-elastic and viscoelastic effects. A finite element method was used to model a meter-class fully coiled bi-stable tape spring boom and verified by analytical models. / <p>QC 20170508</p> / SEAM
4

MECHANICS OF STRUCTURE GENOME-BASED MULTISCALE DESIGN FOR ADVANCED MATERIALS AND STRUCTURES

Su Tian (14232869) 09 December 2022 (has links)
<p>Composite materials have been invented and used to make all kinds of industrial products, such as automobiles, aircraft, sports equipment etc., for many years. Excellent properties such as high specific stiffness and strength have been recognized and studied for decades, motivating the use of composite materials. However, the design of composite structures still remains a challenge. Existing design tools are not adequate to exploit the full benefits of composites. Many tools are still based on the traditional material selection paradigm created for isotropic homogeneous materials, separated from the shape design. This will lose the coupling effects between composite materials and the geometry and lead to less optimum design of the structure. Hence, due to heterogeneity and anisotropy inherent in composites, it is necessary to model composite parts with appropriate microstructures  instead of simplistically replacing composites as black aluminum and consider materials and geometry at the same time.</p> <p><br></p> <p>This work mainly focuses on the design problems of complex material-structural systems through computational analyses. Complex material-structural systems are structures made of materials that have microstructures smaller than the overall structural dimension but still obeying the continuum assumption, such as fiber reinforced laminates, sandwich structures, and meta-materials, to name a few. This work aims to propose a new design-by-analysis framework based on the mechanics of structure genome (MSG), because of its capability in accurate and efficient predictions of effective properties  for different solid/structural models and three-dimensional local fields (stresses, strains, failure status, etc). The main task is to implement the proposed framework by developing new tools and integrating these tools into a complete design toolkit. The main contribution of this work is a new efficient high-fidelity design-by-analysis framework for complex material-structural systems.</p> <p><br></p> <p>The proposed design framework contains the following components. 1) MSG and its companion code SwiftComp is the theoretical foundation for structural analysis in this design framework. This is used to model the complex details of the composite structures. This approach provides engineers the flexibility to use different multiscale modeling strategies. 2) Structure Gene (SG) builder creates finite element-based model inputs for SwiftComp using design parameters defining the structure. This helps designers deal with realistic and meaningful engineering parameters directly without expert knowledge of finite element analysis. 3) Interface is developed using Python for easy access to needed data such as structural properties and failure status. This is used as the integrator linking all components and/or other tools outside this framework. 4) Design optimization methods and iteration controller are used for conducting the actual design studies such as parametric study, optimization, surrogate modeling, and uncertainty quantification. This is achieved by integrating Dakota into this framework. 5) Structural analysis tool is used for  computing global structural responses. This is used if an integrated MSG-based global analysis process is needed.</p> <p><br></p> <p>Several realistic design problems of composite structures are used to demonstrate the capabilities of the proposed framework. Parameter study of a simple fiber reinforce laminated structure is carried out for investigating the following: comparing with traditional design-by-analysis approaches, whether the new approach can bring new understandings on parameter-response relations and because of new parameterization methods and more accurate analysis results. A realistic helicopter rotor blade is used to demonstrate the optimization capability of this framework. The geometry and material of composite rotor blades are optimized to reach desired structural performance. The rotor blade is also used to show the capability of strength-based design using surrogate models of sectional failure criteria. A thin-walled composite shell structure is used to demonstrate the capability of designing variable stiffness structures by steering in-plane orientations of fibers of the laminate. Finally, the tool is used to study and design auxetic laminated composite materials which have negative Poisson's ratios.</p>

Page generated in 0.0666 seconds