Spelling suggestions: "subject:"depth imaging"" "subject:"epth imaging""
1 |
Techniques for improved 2-D Kirchhoff prestack depth imagingManuel, Christopher D. January 2002 (has links)
The goal of oil and gas exploration using seismic methods is to accurately locate geological structures that could host such reserves. As the search for these resources tends towards more complex regions, it is necessary to develop methods to extract as much information as possible from the seismic data acquired. Prestack depth imaging is a seismic processing technique that has the capability to produce a realistic depth image of geological structures in complex situations. However, improvements to this technique are required to increase the accuracy of the final depth image and ensure that the targets are accurately located. Although prestack depth imaging possesses the ability to produce a depth image of the Earth, it does have its disadvantages. Three problematic areas in depth imaging are: the computer run times (and hence costs) are excessively high; the success of depth migration is highly dependent upon the accuracy of the interval velocity model; and seismic multiples often obscure the primary reflection events representative of the subsurface geology. Velocity model building accounts for most of the effort in prestack depth imaging and is also responsible for the likelihood of success. However, the more effort that is expended on this process, the greater the cost of producing the required depth section. In addition, multiples remain a problem in complex depth imaging since many attenuation techniques are based assumptions that may only be approximately correct and in addition require a priori information. The Kirchhoff method is considered to be the workhorse in industry for prestack depth imaging. It is a simple and flexible technique to implement, and usually produces acceptable images at a small fraction of the cost of the other depth migration methods. / However, it is highly dependent on a method for calculating the traveltimes that are required for mapping data from the prestack domain to the output depth section. In addition, it is highly dependent on the accuracy of the interval velocity model. Multiples can also be problematic in complex geological scenarios. To improve the quality of the depth section obtained from Kirchhoff depth imaging, these three issues are considered in this thesis. This thesis took on the challenge of developing new techniques for (a) improving the accuracy and efficiency of traveltimes calculated for use in Kirchhoff prestack depth imaging, (b) building the interval velocity model, and (c) multiple attenuation in complex geological areas. Three new techniques were developed and tested using a variety of numerical models. A new traveltime computation method for simulating seismic multiple reflections was tested and compared with a Promax© finite-difference traveltime solver. The same method was also used to improve the computational efficiency whilst retaining traveltime accuracy. This was demonstrated by application to the well-known Marmousi velocity model and a velocity model obtained from analysis of data from the North West Shelf of Western Australia. / A new interval velocity model building technique that utilises the information contained in multiple events was also implemented and tested successfully using a variety of numerical models. Finally, a new processing sequence for multiple attenuation in the prestack depth domain was designed and tested with promising results being observed. Improved accuracy in the depth image can be obtained by combining the three techniques I have developed. These techniques enable this to be achieved by firstly improving traveltime accuracy and computation efficiency. These benefits are then combined with a more accurate interval velocity model and data with a minimal problematic multiple content to produce an accurate depth image. These new techniques for Kirchhoff depth imaging are capable of producing a depth section with improved accuracy, and with increased efficiency, that will aid in the process of seismic interpretation.
|
2 |
Potato Shape Grading Using Depth Imaging / 深度イメージングを用いたジャガイモの形状評価Su, Qinghua 23 May 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第21278号 / 農博第2294号 / 新制||農||1062(附属図書館) / 学位論文||H30||N5142(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 近藤 直, 教授 清水 浩, 教授 飯田 訓久 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
|
3 |
Imagerie sismique de la structure profonde de la marge Algérienne orientale (secteur de Jijel) : implications en terme de potentiel pétrolier / Seismic imaging of the Eastern Algerian marging of JijelMihoubi, Abdelhafid 30 June 2014 (has links)
Cette thèse a été conduite dans le cadre du programme de coopération de recherche Algéro-française SPIRAL (Sismique Profonde et Investigations Régionales du Nord de l’Algérie). Ce projet vise à étudier la structure profonde de la marge algérienne par une approche combinée des techniques sismiques ; grand-angle et multi-canal. Le domaine couvert par la présente étude se concentre dans la région de Jijel dans la marge algérienne orientale. L’objectif principal de notre thèse est d'améliorer en profondeur l'imagerie de la marge algérienne en utilisant une combinaison de données sismiques grand-angle (OBS, sismomètres de fond de l'océan) et multi-canal (MCS). Le but de cette thèse est d'apporter de nouvelles connaissances pour répondre à quelques questions sur la nature de la croûte terrestre, la zone de transition continentale-océanique, la présence du sel messénien, sa distribution et sa relation entre les formations sédimentaires superficielles et les structures crustales. Dans cette étude, notre approche est une inversion jointe des enregistrements grand-angle et des données sismiques multi-canal. Nous avons conduit une série de tomographie des premières arrivées, une inversion jointe des arrivées réfractées et réfléchies ainsi qu’une modélisation gravimétrique. Etant donné que la solution du problème inverse n’est pas unique, deux programmes de tomographie ont été utilisés sur les mêmes données pour la même région d’étude à savoir : FAST (First Arrival Seismic Tomography) et Tomo2D. La tomographie a été suivie par une inversion jointe des arrivées réfractées et réfléchies suivant une approche basée sur la combinaison de la migration en profondeur « Kirchhoff » avant sommation (PSDM) des données de sismique réflexion multi-canal (MCS) et la modélisation directe des enregistrements grand-angle sur le fonds marin (OBS). Afin de vérifier la consistance du modèle de la vitesse avec les données gravimétriques, l’anomalie à l'air libre a été modélisée. Les résultats de l’imagerie conduite dans ce travail montrent la structure de la marge, la croûte continentale, la zone de transition continent-océan et la croûte océanique de la Méditerranée. La structure du modèle confirme les études antérieures basées sur des données bathymétriques, gravimétriques et magnétiques. Cette structure montre essentiellement : - un plateau continental étroit et pente continentale une très raide.- l’Expulsion du sel vers le nord impliquant la formation de diapirs au-dessus du flanc nord du bassin (plaine abyssale).- L’approfondissement et l’épaississement des séquences sédimentaires (bassin sédimentaire) près de la marge algérienne. Le modèle de vitesses obtenu et l’épaisseur des différentes unités structurales formant ce modèle apportent des arguments quantitatifs pour enrichir la connaissance de cette partie de la Méditerranée occidentale. Les couches sédimentaires dans le bassin montrent des vitesses sismiques allant de 1,9 km / s à 3,8 km / s. Les formations messéniennes ont été modélisées en utilisant une vitesse située entre 3,7 km / s à 3,8 km / s. La croûte continentale s’amincit sur une bande étroite de la marge dont la distance est d'environ 15 km. La vitesse de la croûte océanique dans cette région présente deux couches distinctes : l’une caractérisée par des vitesses variant de 4,7 km / s à 6.1 et l’autre de 6.2 à 7.1 km / s. La vitesse du manteau supérieur quant à elle a été modélisée par 7,9 km / s. / This thesis has been conducted within the framework of the Algerian-French research cooperation program SPIRAL (Sismique Profonde et Investigations Régionales du Nord de l’Algérie). This project aims to study the deep structure of the Algerian margin. The area covered by this study focuses in the region of Jijel in eastern Algerian margin.The main objective of our thesis is to improve depth imaging of the Algerian margin using a combined approach of seismic techniques; wide-angle and multi- channel seismic data. The purpose of this thesis is to bring new knowledge to answer some questions about the nature of the crust, the area of continental -oceanic transition, the presence of Messinian salt, its distribution and relationship between surface sedimentary formations and crustal structures.This study presents the results of a deep seismic survey across the north Algerian margin, based on the combination of 2D multi-channel and wide-angle seismic data simultaneously recorded by 41 ocean bottom seismometers deployed along a North-South line extending 180 km off Jijel into the Algerian offshore basin, and 25 land stations deployed along a 100 km-long line, cutting through the Lesser Kabylia and the Tellian thrust-belt.In this study, our approach is a joint inversion of wide-angle seismic recordings (OBS, ocean bottom seismometers) and multi- channel seismic data (MCS). We conducted a series of first arrivals tomography, a joint inversion of reflected and refracted arrivals and gravity modelling. Since the solution of the inverse problem is not unique, two tomography programs were applied using the same data for the same study area; FAST (First Arrival Seismic Tomography) and Tomo2D. Tomography was followed by a joint inversion of reflected and refracted arrivals following an approach based on the combination of Kirchhoff prestack depth migration (PSDM) for MCS data and forward modelling of OBS. To check the consistency of the velocity model with gravity data, the free air anomaly was modeled.The final model obtained using forward modelling of the wide-angle data and pre-stack depth migration of the seismic reflection data provides an unprecedented view of the sedimentary and crustal structure of the margin. The sedimentary layers in the Algerian basin are 3.75 km thick to the north and up to 4.5 to 5 km thick at the foot of the margin. They are characterised by seismic velocities from 1.9 km/s to 3.8 km/s. Messinian salt formations are about 1 km thick in the study area, and are modelled and imaged using a velocity between 3.7 km/s to 3.8 km/s. The crust in the deep sea basin is about 4.5 km thick and of oceanic origin, presenting two distinct layers with a high gradient upper crust (4.7 km/s - 6.1 km) and a low gradient lower crust (6.2 km/s - 7.1 km/s). The upper mantle velocity is constrained to 7.9 km/s. The ocean-continent transition zone is very narrow between 15 km to 20 km wide. The continental crust reaches 25 km thickness as imaged from the most landward station and thins to 5 km over a less than 70 km distance. The continental crust presents steep and asymmetric upper and lower crustal geometry, possibly due to either asymmetric rifting of the margin, an underplated body, or flow of lower crustal material towards the ocean basin. Present-time deformation, as imaged from 3 additional seismic profiles, is characterized by an interplay of gravity-driven mobile-salt creep and active thrusting at the foot of the tectonically inverted Algerian margin.
|
Page generated in 0.078 seconds