• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exposure of workers to nickel, copper and lead in a base metal recovery plant and laboratory / Chrisna Stapelberg

Stapelberg, Chrisna January 2011 (has links)
Objectives: The objectives of this study were to establish the extent of dermal and respiratory exposure at selected locations at a South African platinum mine. The study included exposure to lead oxide fumes in an assay laboratory, nickel sulfate powder at a nickel sulfate crystallizer circuit and packing site and metallic copper dust whilst executing copper stripping. Methods: In an availability study, the dermal metal exposures were measured before, during and at the end of shifts. Dermal exposure samples were taken with GhostwipesTM from the dominant hand, wrist and forehead. Wipes were analyzed using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES). Wipe samples were taken from surfaces in the workplace and analyzed according to NIOSH 9102, using ICP-AES. Personal and static inhalable dust samples were taken and the dust samples were analyzed according to NIOSH 7300, using ICP-AES. A validated questionnaire was used to evaluate self reported dermatological complaints of the workers at the fire assay laboratory and base metal recovery plant. Results: 100% of the nickel respiratory exposures and 36.8% of the lead respiratory exposures were above the occupational exposure limits (OEL). Copper respiratory exposure was present but less significant with a geometric mean of 0.071 mg m-3. All of the dermal lead measurements and the majority of the nickel and copper dermal measurements were below the limit of detection. Nickel surface contamination was the most significant and ranged between 8.430 μg cm-2 and 387.488 μg cm-2. Only 30% of the copper surface sample results were below the detection limit with a maximum surface sample of 14.41 μg cm-2. Lead surface contamination was low with 90% of the samples below the limit of detection. All of the workers at the nickel crystallizer circuit and packing site had a Dalgard score above 1.3 and therefore are at a higher risk of developing a skin disease. None of the workers at the copper stripping site had a significant Dalgard score and only one worker at the fire assay laboratory had a score above 1.3 and therefore is at a higher risk of developing a skin disease. Conclusions: Recommendations were made to lower the exposure to inhalable lead and nickel. The low lead dermal measurements may be due to adequate personal protective equipment usage and hygiene practices. Although the ethnicity of the workers may be the reason for the low incidence of dermatological complaints, the Dalgard score indicated that five workers are at risk of developing skin diseases. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2011
2

p-Dichlorobenzene and naphthalene : emissions and related primary and secondary exposures in residential buildings

Guerrero, Priscilla Annette 25 October 2013 (has links)
p-Dichlorobenzene (p-DCB) and naphthalene are compounds classified as Group C carcinogens according to the USEPA. Sources of p-DCB and naphthalene include moth repellents and deodorizers typically used in closets, garment bags, and toilet bowls found in pure form. In this study, laboratory, closet, and garment bag experiments were used to determine emission rates of p-DCB and naphthalene from consumer products (closet air freshener, toilet bowl deodorizer, and moth repellent). Emission rates varied considerably between products that contain p-DCB, primarily due to product packaging, and were generally suppressed when the product was used in a closed closet or garments bag, relative to products placed in well-ventilated chambers. Experimental mass emission rates were used in conjunction with a well-mixed reactor model to predict indoor p-DCB and naphthalene concentrations for a range of reasonable residential scenarios. Results suggest that exposures under worst-case scenarios could lead to excess lifetime cancer risks of greater than 20,000 in a million (2%) for those who use consumer products that are pure p-DCB, a risk that dwarfs any reported environmental cancer risks over large segments of the US population. Since such products are typically used where clothing is kept, significant chemical adsorption onto clothing is possible following sublimation from the solid product. Chamber experiments were used to determine the amount of p-DCB and naphthalene mass that adsorbs onto selected clothing materials made of cotton, polyester, or wool. Cloth specimens were kept inside a chamber through which an air stream containing p-DCB or naphthalene was passed for one month. After this time, p-DCB or naphthalene were chemically extracted from the cloth specimens. Polyester was determined to be the most adsorbent material, while cotton was the least adsorbent for each chemical. Equilibrium partition coefficients of 0.01 m³/g for p-DCB and 0.02 m³/g for naphthalene were determined experimentally for wool. Desorption rates were determined in both laboratory chambers and a closet in a test house. Results suggest prolonged persistence of p-DCB and naphthalene on polyester and wool, e.g., half-lives of 12 to 20 days after a moth repellent is removed from the clothes storage environment. An exposure scenario was also carried out to compare the inhalation and dermal exposure risks associated with contaminated clothing. / text
3

Exposure of workers to nickel, copper and lead in a base metal recovery plant and laboratory / Chrisna Stapelberg

Stapelberg, Chrisna January 2011 (has links)
Objectives: The objectives of this study were to establish the extent of dermal and respiratory exposure at selected locations at a South African platinum mine. The study included exposure to lead oxide fumes in an assay laboratory, nickel sulfate powder at a nickel sulfate crystallizer circuit and packing site and metallic copper dust whilst executing copper stripping. Methods: In an availability study, the dermal metal exposures were measured before, during and at the end of shifts. Dermal exposure samples were taken with GhostwipesTM from the dominant hand, wrist and forehead. Wipes were analyzed using Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES). Wipe samples were taken from surfaces in the workplace and analyzed according to NIOSH 9102, using ICP-AES. Personal and static inhalable dust samples were taken and the dust samples were analyzed according to NIOSH 7300, using ICP-AES. A validated questionnaire was used to evaluate self reported dermatological complaints of the workers at the fire assay laboratory and base metal recovery plant. Results: 100% of the nickel respiratory exposures and 36.8% of the lead respiratory exposures were above the occupational exposure limits (OEL). Copper respiratory exposure was present but less significant with a geometric mean of 0.071 mg m-3. All of the dermal lead measurements and the majority of the nickel and copper dermal measurements were below the limit of detection. Nickel surface contamination was the most significant and ranged between 8.430 μg cm-2 and 387.488 μg cm-2. Only 30% of the copper surface sample results were below the detection limit with a maximum surface sample of 14.41 μg cm-2. Lead surface contamination was low with 90% of the samples below the limit of detection. All of the workers at the nickel crystallizer circuit and packing site had a Dalgard score above 1.3 and therefore are at a higher risk of developing a skin disease. None of the workers at the copper stripping site had a significant Dalgard score and only one worker at the fire assay laboratory had a score above 1.3 and therefore is at a higher risk of developing a skin disease. Conclusions: Recommendations were made to lower the exposure to inhalable lead and nickel. The low lead dermal measurements may be due to adequate personal protective equipment usage and hygiene practices. Although the ethnicity of the workers may be the reason for the low incidence of dermatological complaints, the Dalgard score indicated that five workers are at risk of developing skin diseases. / Thesis (M.Sc. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2011
4

Characterization of soil remediation workers’ dermal exposure to polycyclic aromatic compounds

Johansson, Beatrice January 2018 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds that are composed by at least two aromatic rings. PAHs can be found in coal and petroleum, but can also be formed from incomplete combustion of for example fossil fuels, tobacco, wood and when smoking food. PAHs has been shown to cause several health risks such as carcinogenic effects, which led to that the U.S Environmental Protection Agency (U.S. EPA) selected 16 PAHs as priority pollutants. Those 16 PAHs is usually analysed when investigating PAH exposure. To analyze dermal exposure of PAHs a tape-stripping technique can be used. The tape-stripping method involves that a tape piece is placed on the skin to absorb the present PAHs and then the tape is removed and the PAHs can be extracted and cleaned-up from the tape. The aim of this study is to optimize a recently elaborated clean-up method for PAHs sampled by the tape-stripping technique. Also, to apply the method and measure the dermal exposure of 16 PAHs among soil remediation workers. Two clean-up methods were evaluated, Florisil SPE columns and deactivated silica (10%). Clean-up using Florisil columns were evaluated using 10 and 12 ml of n-hexane. For elution, poor recoveries were achieved for both elution volumes tested. On the other hand, tests using deactivated silica generated good recoveries for both elution solvents tested (i.e. 4 ml n-hexane:dichloromethane + 4 ml dichloromethane and 8 ml n-hexane). As for the elution solvents, no significant difference could be seen in the recoveries and the mixture of n-hexane and dichloromethane was used for the real samples. The dermal exposure of PAHs for the soil remediation workers were investigated using dermal tapes from the palm and neck of 18 soil remediation workers. Samples from the palm were sampled before and after a working day and there was a small difference between the total PAH concentration before and after a work-shift. For all categories of workers (office staff, machine operators and persons performing sampling) an increase in dermal concentration of PAHs could be observed for ten of the workers, but this increase were highest among the workers active in taking samples at the contaminated site. However, an increase in PAH exposure was not observed for all study participants and possible this is due to hand-washing after toilet visits. Overall, the concentrations of PAHs on the dermal samples from soil remediation workers were low, especially in comparison to other occupations such as chimney sweeps and pavers where PAH exposure is known to exist. The detected PAHs on the dermal tapes corresponded to PAH profiles in soil samples from the site.
5

Dermal Exposure and Risk to Aerosolized Pharmaceuticals in Home Healthcare Workers.

Ishau, Simileoluwa O. 02 June 2020 (has links)
No description available.
6

Assessment of dermal exposure and skin condition of refinery workers exposed to selected metals / J.L. du Plessis

Du Plessis, Johannes Lodewykus January 2010 (has links)
Aims and objectives: The research aims and objectives of this thesis were: (i) to review literature pertaining to different dermal exposure assessment methods; (ii) to assess dermal exposure of refinery workers to nickel and/or cobalt by making use of skin wipes as a removal method; (iii) to assess concurrently the skin condition of the above mentioned workers by measuring skin hydration, transepidermal water loss (TEWL) and skin surface pH, and (iv) to compare South African skin notations and sensitisation notations with those of other developed countries. Methods: Refinery workers from two base metal refineries participated in this study. Skin condition and dermal exposure was measured on different anatomical areas before, during and at the end of a work shift. Dermal exposure to nickel and/or cobalt was assessed with Ghostwipes TM as a removal method. Wipe samples of potentially contaminated surfaces in the workplace were also collected. Wipes were analysed for nickel and/or cobalt according to NIOSH method 9102, using Inductively Coupled Plasma-Atomic Emission Spectrometry. The assignment and use of skin notations and sensitisation notations in South African legislation and six other developed countries were compared. Results: To date, occupational dermal exposure has been reported for numerous substances by making use of surrogate skin methods (interception methods), removal methods and fluorescent tracer methods (in situ detection methods). From published literature it is evident that skin (dermal) wipes, as a removal method, are the most appropriate method to assess dermal exposure to metals. Varying degrees of skin dryness (low hydration indices) and impaired barrier function (high TEWL indices) are reported, with the hands being implicated the most. However, normal skin condition is also reported for some anatomical areas. Skin surface pH for all anatomical areas sampled decreased significantly during the shift, but remained in normal range. Dermal exposure to nickel occurred during the shift at the electro-winning plant of one refinery, while dermal co-exposure to cobalt and nickel occurred at the cobalt plant of the other refinery. At both of the refineries, cobalt and/or nickel was collected from the workers’ skin even before the shift. Also, dermal exposure to these metals was highly variable between individual workers. Skin notations in South African legislation had a mean agreement of between 42.9% and 45.8% with other countries, while agreement for sensitisation notations was only 3.6% between countries. / Thesis (Ph.D. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2011.
7

Assessment of dermal exposure and skin condition of refinery workers exposed to selected metals / J.L. du Plessis

Du Plessis, Johannes Lodewykus January 2010 (has links)
Aims and objectives: The research aims and objectives of this thesis were: (i) to review literature pertaining to different dermal exposure assessment methods; (ii) to assess dermal exposure of refinery workers to nickel and/or cobalt by making use of skin wipes as a removal method; (iii) to assess concurrently the skin condition of the above mentioned workers by measuring skin hydration, transepidermal water loss (TEWL) and skin surface pH, and (iv) to compare South African skin notations and sensitisation notations with those of other developed countries. Methods: Refinery workers from two base metal refineries participated in this study. Skin condition and dermal exposure was measured on different anatomical areas before, during and at the end of a work shift. Dermal exposure to nickel and/or cobalt was assessed with Ghostwipes TM as a removal method. Wipe samples of potentially contaminated surfaces in the workplace were also collected. Wipes were analysed for nickel and/or cobalt according to NIOSH method 9102, using Inductively Coupled Plasma-Atomic Emission Spectrometry. The assignment and use of skin notations and sensitisation notations in South African legislation and six other developed countries were compared. Results: To date, occupational dermal exposure has been reported for numerous substances by making use of surrogate skin methods (interception methods), removal methods and fluorescent tracer methods (in situ detection methods). From published literature it is evident that skin (dermal) wipes, as a removal method, are the most appropriate method to assess dermal exposure to metals. Varying degrees of skin dryness (low hydration indices) and impaired barrier function (high TEWL indices) are reported, with the hands being implicated the most. However, normal skin condition is also reported for some anatomical areas. Skin surface pH for all anatomical areas sampled decreased significantly during the shift, but remained in normal range. Dermal exposure to nickel occurred during the shift at the electro-winning plant of one refinery, while dermal co-exposure to cobalt and nickel occurred at the cobalt plant of the other refinery. At both of the refineries, cobalt and/or nickel was collected from the workers’ skin even before the shift. Also, dermal exposure to these metals was highly variable between individual workers. Skin notations in South African legislation had a mean agreement of between 42.9% and 45.8% with other countries, while agreement for sensitisation notations was only 3.6% between countries. / Thesis (Ph.D. (Occupational Hygiene))--North-West University, Potchefstroom Campus, 2011.
8

Dermal exposure and skin barrier function of workers exposed to copper sulphate at a chemical industry / Christa Steynberg

Steynberg, Christa January 2013 (has links)
Copper exposure is known to be a rare cause of skin irritation and allergic reactions and according to our knowledge occupational dermal exposure to copper sulphate has not yet been characterised. As a result, the objectives of this study were to assess the dermal exposure of workers at a chemical industry to copper sulphate and to characterise the change in the their skin barrier function from before to the end of the work shift, as the skin’s barrier function can greatly influence the permeation of chemical substances. Methods: The change in skin barrier function of reactor workers, crystal and powder packaging workers at the chemical industry were assessed by measuring their dominant hand’s palm, back and wrist as well as their foreheads’ skin hydration, transepidermal water loss (TEWL) and skin surface pH before and at the end of the work shift. Commercial GhostwipesTM were used to collect dermal exposure samples from the same four anatomical areas before and at the end of the shift. Additional dermal exposure samples were collected from the palm and back of hand, prior to breaks 1 and 2. Surface wipe sampling was also conducted at several work and recreational areas of the chemical industry. Wipe samples were analysed by an accredited analytical laboratory, according to NIOSH method 9102 by means of Inductively Coupled Plasma-Atomic Emission Spectrometry. Results: Changes in skin hydration of the workers and anatomical areas at the end of the work shift were highly variable, while in general TEWL increased and skin surface pH decreased. Copper was collected from the skin of all workers before the shift commenced, and dermal exposure increased throughout the work shift. All of the work and recreational areas from which surface samples were taken, were contaminated with copper. Conclusion: As a result of intermittent use of inadequate protective gloves and secondary skin contact with contaminated surfaces and work clothing, workers at the chemical industry are exposed to copper sulphate via the dermal exposure route. The decrease in the workers’ skin barrier function (increased TEWL) and skin surface pH is most likely the result of their dermal exposure to sulphuric acid, and may lead to enhanced dermal penetration. The low account of skin irritation or reaction incidences among these workers is contributed to their ethnicity as well as to the low sensitisation potential of copper. Recommendations on how to lower dermal exposure and improve workers’ skin barrier function are made. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
9

Dermal exposure and skin barrier function of workers exposed to copper sulphate at a chemical industry / Christa Steynberg

Steynberg, Christa January 2013 (has links)
Copper exposure is known to be a rare cause of skin irritation and allergic reactions and according to our knowledge occupational dermal exposure to copper sulphate has not yet been characterised. As a result, the objectives of this study were to assess the dermal exposure of workers at a chemical industry to copper sulphate and to characterise the change in the their skin barrier function from before to the end of the work shift, as the skin’s barrier function can greatly influence the permeation of chemical substances. Methods: The change in skin barrier function of reactor workers, crystal and powder packaging workers at the chemical industry were assessed by measuring their dominant hand’s palm, back and wrist as well as their foreheads’ skin hydration, transepidermal water loss (TEWL) and skin surface pH before and at the end of the work shift. Commercial GhostwipesTM were used to collect dermal exposure samples from the same four anatomical areas before and at the end of the shift. Additional dermal exposure samples were collected from the palm and back of hand, prior to breaks 1 and 2. Surface wipe sampling was also conducted at several work and recreational areas of the chemical industry. Wipe samples were analysed by an accredited analytical laboratory, according to NIOSH method 9102 by means of Inductively Coupled Plasma-Atomic Emission Spectrometry. Results: Changes in skin hydration of the workers and anatomical areas at the end of the work shift were highly variable, while in general TEWL increased and skin surface pH decreased. Copper was collected from the skin of all workers before the shift commenced, and dermal exposure increased throughout the work shift. All of the work and recreational areas from which surface samples were taken, were contaminated with copper. Conclusion: As a result of intermittent use of inadequate protective gloves and secondary skin contact with contaminated surfaces and work clothing, workers at the chemical industry are exposed to copper sulphate via the dermal exposure route. The decrease in the workers’ skin barrier function (increased TEWL) and skin surface pH is most likely the result of their dermal exposure to sulphuric acid, and may lead to enhanced dermal penetration. The low account of skin irritation or reaction incidences among these workers is contributed to their ethnicity as well as to the low sensitisation potential of copper. Recommendations on how to lower dermal exposure and improve workers’ skin barrier function are made. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
10

In vitro skin permeation of selected platinum group metals / Anja Franken

Franken, Anja January 2014 (has links)
Background: Platinum group metal (PGM) mining and refining is a large constituent of the mining sector of South Africa and contributes significantly to the gross domestic product. The PGMs include the rare metals platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir) and osmium (Os). During the refining process workers are potentially exposed to various chemical forms of the PGMs via the respiratory and dermal exposure routes. Historically, emphasis has been on respiratory exposure while the extent of skin exposure is still unknown. Among the different forms of PGMs, the salts are potential sensitisers, with platinum being a known respiratory sensitiser. Workers occupationally exposed to platinum and rhodium have reported respiratory as well as skin symptoms. However, it is unknown if these metals in the salt form are permeable through human skin, and whether dermal exposure could contribute to sensitisation. Evidence regarding differences between African and Caucasian skin anatomy and structure, as well as permeation through skin is contradictory, and no information is available on metal permeation through African skin. The in vitro diffusion method has been utilised successfully in occupational toxicology to demonstrate that metals such as chromium, cobalt and nickel, to name a few, permeate through human skin. The permeability of platinum and rhodium has not been investigated previously. Aims and objectives: The research aim was to obtain insight into the permeability of platinum and rhodium through intact human skin and to provide information needed to determine the potential health risk following dermal exposure to these metals. The specific objectives included: (i) to critically review the in vitro diffusion method that is used to determine the permeability of metals through human skin, (ii) to investigate the permeation of potassium tetrachloroplatinate (K2PtCl4) and rhodium chloride (RhCl3) as representative PGM salts through intact human skin over a 24-hour period, (iii) to evaluate the difference in permeability of platinum and rhodium through intact human skin, (iv) to evaluate the difference in permeability of platinum through intact African and Caucasian human skin. Methods: Abdominal skin obtained after cosmetic procedures was obtained from five female Caucasian and three female African donors between the ages of 28 and 52 with ethical approval from the North-West University. Full thickness skin tissue was mounted in a vertical Franz diffusion cell. Skin integrity was tested by measuring the electrical resistance across the skin before and after conclusion of the experiments, using a Tinsley LCR Data bridge Model 6401. The donor solution of 32.46 mg K2PtCl4 in 50 ml of synthetic sweat (pH 6.5), and 43.15 mg RhCl3 in 50 ml of synthetic sweat (pH 6.5) was prepared. The donor solution was applied to the stratum corneum side of the skin and physiological receptor solution (pH 7.35) was added to the receptor compartment. The concentration of the metals in the receptor solution was determined by high resolution inductively coupled plasma-mass spectrometry after extraction at various intervals during the 24 hours of the study. After completion of the study, the skin was rinsed four times to remove any platinum or rhodium remaining on the skin surface. The skin was digested using hydrogen peroxide, nitric acid and hydrochloric acid during different steps to determine the mass of the metals remaining in the skin by inductively coupled plasma-optical emission spectrometry. Results: The comparison of published in vitro skin permeation studies involving metals is impeded by the variations in the experimental design and dissimilarity in the reporting of results. Differences in experimental design included, most noticeably, the use of various donor and receptor solutions, different temperatures wherein the receptor compartment was placed, differences in skin thickness and variations in exposed skin surface areas. The metals considered in the review, namely chromium, cobalt, gold, lead, mercury, nickel, platinum, rhodium and silver, permeate through intact human skin under physiological conditions. Large variations in the permeability results were observed, with the notable differences in methodology as the probable reason. Results obtained from the in vitro experiments indicate that platinum and rhodium permeated through intact Caucasian skin with flux values of 0.12 and 0.05 ng/cm2/h, respectively. The cumulative mass of platinum (2.57 ng/cm2) that permeated after 24 hours of exposure was statistically significantly (p = 0.016) higher than rhodium permeation (1.11 ng/cm2). The mass of platinum (1 459.47 ng/cm2) retained in the skin after 24 hours of exposure was statistically significantly (p < 0.001) higher than rhodium retention (757.04 ng/cm2). The comparison of permeability between two different racial groups indicates that platinum permeated through the skin of both racial groups with the flux through African skin found as 1.93 ng/cm2/h and 0.27 ng/cm2/h through Caucasian skin. The cumulative mass of platinum permeated after 24 hours of exposure was statistically significantly (p = 0.044) higher through African skin (37.52 ng/cm2) than Caucasian skin (5.05 ng/cm2). The retention of platinum in African skin (3 064.13 ng/cm2) was more than twice the mass retained in Caucasian skin (1 486.32 ng/cm2). Conclusions: The in vitro diffusion method is an applicable method to determine skin permeability of metals. However, the experimental design and format of data reporting should be standardised to enable comparison of results from different studies. Platinum and rhodium permeated through intact human skin, with platinum permeation significantly higher. African skin was significantly more permeable by platinum than Caucasian skin. Both platinum and rhodium were retained inside the skin after 24 hours of exposure, possibly forming a reservoir which could contribute to continued permeation through the skin even after removal thereof from the skin. Platinum and rhodium permeated through full thickness skin and thereby could possibly contribute to local skin symptoms such as dermatitis and urticaria found in occupationally exposed workers. By permeating through the upper layers of the skin, these metals could potentially reach the viable epidermis and contribute to sensitisation. / PhD (Occupational Hygiene), North-West University, Potchefstroom Campus, 2015

Page generated in 0.4579 seconds