Spelling suggestions: "subject:"dermal substituted"" "subject:"bthermal substituted""
1 |
Intérêt des substituts dermiques pour la chirugie réparatrice : support pour l'administration in vivo de cellules souches ou pour la consruction in vitro d'un lambeau microanastomosable / Use of dermal substitute for reconstructive surgery : carrier for seeding stem cells in vivo or for in vitro construction of a flap suitable for microvascular transplantationBach, Christine 24 September 2015 (has links)
En cancérologie cervico-faciale, la couverture d’éléments nobles ou de pertes de substance profondes fait souvent appel à l’utilisation de lambeaux locaux, locorégionaux ou libres. La réalisation de lambeaux autologues nécessite de sacrifier une structure indemne au profit de la structure lésée. Lorsque la réalisation d’un lambeau n’est pas envisageable, l’utilisation de substitut dermique peut être une alternative.L’ingénierie tissulaire permet de cultiver presque tous les types cellulaires (cellules différenciées, cellules souches) seuls ou en association (pe peau totale reconstruite) avec des matrices telles que le collagène pour obtenir des cultures tridimensionnelles. Utilisées in vivo en tant que substrat dermique, les matrices de collagène vont servir de guide aux cellules de l’hôte qui vont la coloniser, synthétiser leur propre matrice extra-cellulaire et développer un réseau vasculaire.Les tissus reconstruits se comportent comme des greffes : leur nutrition se fait d’abord par imbibition à partir du site receveur, puis par recolonisation vasculaire à partir du lit de la greffe. L’épaisseur du tissu greffable est donc limitée.Une revue de la littérature sur la peau reconstruite par ingénierie tissulaire et des différentes stratégies de vascularisation d’un tissu reconstruit est présentée. Le but de notre travail était d’évaluer les capacités des substituts dermiques comme vecteur de cellules souches pour la régénération tissulaire in vivo et comme support au développement d’une neovascularisation à partir d’un vaisseau sanguin ouvrant la voie au lambeau microanastomosable reconstruit in vitro. / In head and neck cancer, coverage of noble elements or deep wounds often requires the use of local, locoregional or free flaps. Autologous flaps consist of transferring the patient’s own tissues, but require sacrifice of the healthy structure to replace the damaged structure. When performing a flap is not an option, the use of dermal substitute may be an alternative.Tissue engineering is a rapidly growing discipline comprising multiple fields of research. Almost all cell types can be cultured alone or in combination (e.g. reconstructed full-thickness skin) with matrices such as collagen to obtain three dimensional cultures. Collagen matrices, used in vivo as dermal substrates, are used to guide the growth of host cells (fibroblasts, endothelial cells, etc.) that colonize the matrix, synthesize their own extracellular matrix and develop a vascular network.Reconstructed tissues behave like tissue grafts: nutrition of these tissues is initially based on diffusion from the recipient site and then by vascular recolonization from the bed of the graft. The thickness of graftable tissue is therefore limited.A review of the literature on skin tissue engineering and current strategies to create vascularized tissue is presented. The aim of our study was to evaluate the capacity of dermal substitutes as a carrier of stem cells for tissue regeneration in vivo and as a support to the development of neovascularization from a blood vessel opening the way to flap suitable for microvascular transplantation reconstructed in vitro.
|
2 |
Synthèse et caractérisation d’hydrogels de fibrine et de polyéthylène glycol pour l’ingénierie tissulaire cutanée / Synthesis and characterization of fibrin/polyethylene glycol based for skin tissue engineeringGsib, Olfat 20 March 2018 (has links)
Depuis plus d’une cinquantaine d’années, de formidables avancées ont été initiées dans le domaine de l’ingénierie tissulaire cutanée menant à la reconstruction in vitro de substituts de peau. La plupart sont des substituts dermiques destinés à être utilisés comme aide à la cicatrisation des plaies aigües et chroniques en complément des traitements de greffes conventionnels ainsi que pour l’augmentation des tissus mous. Bien qu’un nombre croissant de patients aient pu bénéficier de ces matrices dermiques, leur application clinique reste encore restreinte, en raison de leur coût élevé mais également à cause de résultats cicatriciels parfois peu satisfaisants. Par conséquent, il reste un défi de taille, celui de développer des substituts dermiques stimulant activement la cicatrisation, présentant un faible coût de production, sans propriétés antigéniques et possédant des propriétés mécaniques adaptées. Dans ce cadre, les hydrogels à base de fibrine constituent des candidats prometteurs, en particulier en raison du rôle central de cette protéine dans la cicatrisation. Le principal inconvénient est qu’à concentration physiologique, ces hydrogels sont faibles mécaniquement, ce qui les rend difficilement manipulables. L’objectif de cette thèse a été la mise au point ainsi que la caractérisation de différents hydrogels destinés à être utilisés comme substituts dermiques. Ces derniers présentent l’avantage d’associer les propriétés biologiques de la fibrine avec les propriétés mécaniques d’un polymère synthétique, le polyéthylène glycol dans une architecture de réseaux interpénétrés de polymères (RIP). Les résultats obtenus ont permis : - de confirmer les propriétés physico-chimiques des RIP développés initialement par nos collaborateurs de l’université de Cergy-Pontoise, - de valider en trois étapes (in vitro, ex vivo puis in vivo) la biocompatibilité de ces nouvelles matrices, destinées à être utilisées comme supports de culture 2D et pour l’augmentation des tissus mous, - d’élaborer et de caractériser des matrices macroporeuses, optimisées pour la culture 3D de fibroblastes de dermes humains. / Over the past five decades, we assisted in extraordinary advances in the field of skin tissue engineering which led to the in vitro reconstruction of a wide range of skin substitutes. Most of them are dermal substitutes: Their clinical application ranges from treating acute and chronic wounds to soft tissue augmentation. Although increasing numbers of patients have been treated with dermal substitutes, their clinical application has been limited by their substantial cost and some poor healing outcomes. Hence, there is still a challenge to produce a dermal substitute which enhance sufficiently wound healing. To this end, the substitute should exhibit suitable properties for enabling the repair process. Other requirements such as excellent biocompatibility, minimal antigenicity, ease to handle and cost-effective production are also essential. In this context, fibrin hydrogels constitute promising candidates for skin tissue engineering since fibrin fibers form a physiological and provisional backbone during wound healing. However, the poor mechanical properties of fibrin-based hydrogels at physiological concentration are an obstacle to their use. In this study, our aim was to design and characterize mechanically reinforced fibrin-based hydrogels by combining the intrinsic properties of a fibrin network with the mechanical features of a polyethylene glycol network using an interpenetrating polymer network (IPN) architecture. They are intended to be used as dermal scaffolds. The results obtained in this thesis: - Confirmed the suitable physico-chemical properties of IPN, first developed by our partner of the University of Cergy-Pontoise. - Validated their biocompatibility using a three-step approach (in vitro, ex vivo and in vivo assays). - Led to the synthesis and characterization of a new type of fibrin-based macroporous matrices, optimized for 3D dermal fibroblast culture.
|
Page generated in 0.044 seconds