• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 33
  • 25
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 352
  • 147
  • 85
  • 80
  • 73
  • 61
  • 58
  • 46
  • 43
  • 41
  • 30
  • 28
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Sustainable Energy Solutions for Water Purification Applications: Municipal and Industrial Case Studies

Mira, Sebastião Bittencourt de 05 1900 (has links)
In several areas around the world, clean water is a precious asset that at anytime, and mainly due to circumstances of weather and climate, can become scarce. Mainly in the dry and remote places, people suffer with lack of water. A solution for this suffering can be a water desalination system, which makes water potable and usable for industry. That solution inherently, brings the problem of power requirement, which is sometimes arduous to accomplish in such remote areas of difficult access and long distances to overcome to build the infrastructure required to operate an electric power plant. Texas and the USA also face this scenario for many regions, for which the government has been creating some programs and driving forward incentives, looking for solutions to support water desalination. Water desalination has future applications for municipalities water-consuming or for arid and remote regions, as well as for industries that rely on heavy water usage, such as natural gas drilling operations, for which millions of gallons are trucked overland to the site and also hauled away afterwards, when the waste water produced must be treated. This thesis created the concept of autonomy for water desalination plants replacing the actual power supply from fossil fuel to a renewable source from wind or sun, giving capacity to them to produce its own electricity to operate as an autonomous unit, as demonstrated in the business case done for the Brownsville water desalination facility.
92

Layer-by-Layer Assembly of Carbon Nanomaterials Containing Thin Film Nanocomposite Membranes for Water Desalination and Organic Solvent Nanofiltration Applications

Abbaszadeh, Mahsa 25 November 2020 (has links)
The application of membranes in liquid and gas separation is attractive because of their energy efficiency. Synthesis of membranes with well-defined nanostructure is necessary to achieve highly permeability and selectivity for separation processes. Recently, carbon nanomaterials such as graphene oxide nanoplatelets (GONPs) and carbon nanodots (CNDs) have emerged as an interesting class of nanomaterials due to their unique properties and tailorable functionalities. Incorporation of these nanomaterials in the membranes has been shown to improve membrane selectivity, mechanical robustness, and chemical stability. This dissertation elaborates on developing CNDs or GONPs embedded thin film composite (TFC) membranes using layer-by-layer (LbL) synthesis technique. Regarding the water desalination applications, GONPs were used to enhance the TFC membranes’ selectivity, chlorine resistant properties, and surface hydrophilicity. Incorporation of GONPs in the polyamide layer via LbL method resulted in an increase of surface hydrophilicity and salt rejection properties. Upon exposure to chlorine, GONPs embedded membranes retained salt rejection performance better than the pristine membranes (without GONPs). The LbL assembly was used to synthesize CNDs based TFC membranes for organic solvent nanofiltration (OSN) applications. Using the LbL framework, amineunctionalized CNDs were covalently crosslinked with trimesoyl chloride monomer to obtain nanoscale membranes. The synthesized membranes manifested high selectivity (up to 90%) when tested for dye molecules such as brilliant blue and disperse red in methanol. As the CNDs synthesized here are fluorescent under UV light, the resultant film is also fluorescent. This property can be harnessed for diagnostic purposes, such as tracking mechanical failure and fouling of the membranes. Based on the results, it can be concluded that the incorporation of carbon nanomaterials in the polymeric membranes has enhanced the hydrophilicity, mechanical stability, and chlorine resistant properties of the membranes. Overall, the LbL platform can be considered as a modular method in embedding nanoparticles in TFC membranes.
93

A N-E-W (nutrient-energy-water) synergy in a bioelectrochemical nitritation anammox process

Ghimire, Umesh 30 April 2021 (has links)
Partial nitritation combined with the anaerobic ammonium oxidation (Anammox) process offers a way of replacing the conventional nitrogen removal process of nitrification-denitrification, lowering the need for oxygen and chemical input, as well as reducing the production of sludge. However, as a by-product of the biochemical reaction driven by anammox bacteria, it produces nitrate-nitrogen (NO3- - N) (16-26% nitrogen removed), which is problematic. Microbial desalination cells (MDCs) are a promising technology capable of converting biodegradable organics into electricity (by electroactive bacteria), providing for simultaneous desalination, and wastewater treatment. Despite being a promising technology, MDCs have limitations. The first-proof of-concept of MDC was demonstrated using acetate as the organic source, expensive platinum as a catalyst, and ferricyanide as an electron acceptor in the cathode that makes MDC costly, environmentally unfriendly, and unsustainable. This research investigated the integration of the anammox and nitration processes in MDCs as a long-term biocatalyst/biocathode for sustainable and energy-efficient nitrogen removal and electricity generation. A series of experiments were designed and performed to evaluate the performance of the anammox process as a biocatalyst in MDCs. The results concluded that the anammox process can be used as a biocatalyst to accept electrons in MDCs producing 444 mW/m3 of power density and 84% of ammonium nitrogen removal. Furthermore, the concept of using a one-stage nitritation anammox process as a biocathode in MDC was evaluated and produced a maximum power output of 1007 mW/m3. Two configurations of anammox MDCs (anaerobic-anammox cathode MDC (AnAmmoxMDC) and nitritation-anammox cathode MDC (NiAmoxMDC) were compared with an air cathode MDC (CMDC), operated in fed-batch mode. The NiAmoxMDC showed better performance in terms of power production and nitrogen removal. The co-existence of aerobic ammonium oxidizing bacteria (AOB) and anammox bacteria in the same biocathode of single-stage NiAmoxMDC concluded the resource-efficient wastewater treatment. Furthermore, two-stage nitritation anammox as a biocathode in MDC was evaluated and proved to be energy-efficient bioelectrochemical wastewater treatment by producing 1500 mW/m3 (300 mW/m2) of maximum power output. This research provides the first proof of concept that nitritation-anammox biocathode can provide a sustainable and energy-efficient nitrogen removal along with desalination and bioelectricity generation.
94

A Sustainable Water Supply for Santorini: Creating a Model for Islands of the Aegean Sea

Duvall, Zachary W. 11 July 2006 (has links)
No description available.
95

Simulation of vacuum membrane distillation process for desalination with Aspen Plus

Cao, W., Mujtaba, Iqbal M. 23 December 2014 (has links)
Yes / This paper presents a simulation study of vacuum membrane distillation (VMD) for desalination. A simulation model was built on Aspen Plus® platform as user defined unit operation for VMD module. A simplified mathematical model was verified and the analysis of process performance based on simulation was also carried out. Temperature and concentration polarization effects are significant in the conditions of higher feed temperature and/or vacuum pressure. The sign of difference of the vapour pressures between at the membrane interfaces, is a pointer of the vacuum pressure threshold. Increasing the vacuum pressure at lower feed temperature is an effective way to increase the permeate flux and reduce the energy consumption simultaneously.
96

Advancing Microbial Desalination Cell towards Practical Applications

Ping, Qingyun 03 November 2016 (has links)
Conventional desalination plant, municipal water supply and wastewater treatment system are among the most electricity-intensive facilities. Microbial Desalination Cell (MDC) has emerged as a promising technique to capture the chemical energy stored in wastewater directly for desalination, which has the potential to solve the high energy consumption issue in desalination industry as well as wastewater treatment system. The MDC is composed of two critical components, the electrodes (anode and cathode), and the ion-exchange membranes separating the two electrodes which drive anions migrate towards the anode, and cations migrate towards the cathode. The multiple components allow us to manipulate the configuration to achieve most efficient desalination performance. By coupling with Donnan Dialysis or Microbial Fuel Cell, the device can effectively achieve boron removal which has been a critical issue in desalination plants. The uncertainty of water quality of the final desalinated water caused by contaminant back diffusion from the wastewater side can be theoretically explained by two mechanisms, Donnan exchange and molecule transport which are controlled by bioelectricity and concentration gradient. Scaling and fouling is also a factor needs to be taken into consideration when operating the MDC system in real world. With mathematical modeling, we can provide insight to bridge the gap between lab-scale experiments and industrial applications. This study is expected to provide guidance to enhance the efficiency as well as the reliability and controllability of MDC for desalination. / Ph. D.
97

Functionalized carbon nanotube thin-film nanocomposite membranes for water desalination applications

Chan, Wai-Fong 23 December 2015 (has links)
Cost-effective purification and desalination of water is a global challenge. Reverse osmosis (RO), the current method of choice, requires high pressure drops across the membranes in order to achieve acceptably high flow rates. Conventional polymer membranes are limited in their performance by a trade-off between water permeability and water/salt selectivity. Biofilm fouling is another critical problem in RO applications. Recent simulations and experiments suggest that properly functionalized carbon nanotubes (CNTs) can be used to construct RO membranes that have high permeation flux as well as complete ion rejection, and that are resistant to biofilm formation. The objective of this research was to combine zwitterion-functionalized carbon nanotubes with traditional thin film polyamide (PA) to fabricate a novel desalination membrane which has both high permeability as well as selectivity. Zwitterion functional groups in CNTs act as molecular gatekeepers at the entrance of the nanotubes to enhance blockage for salt ions. Functionalized CNTs were oriented on a membrane support by high vacuum filtration. These oriented CNTs were sealed by a polyamide film via interfacial polymerization. Cross-sectional image of the nanocomposite membrane taken by scanning electron microscopy (SEM) showed semi-aligned zwitterion-CNTs on top of a porous support covered by a thin PA film with an overall thickness of approximately 250 nm. When the concentration of zwitterion-CNTs in the membrane increased, the nanocomposite membranes experienced significant improvement in permeation flux while the ion rejection increases slightly or remains unchanged. This indicated that the increased water flux is not due to an increase in nonspecific pores in the membrane, but rather due to an additional transport mechanism resulting from the presence of the functionalized CNTs. Significant increase of flux was also observed in separating cations other than sodium. The separation of the PA skin layer dominated the ion rejection mechanism by size exclusion even when the carbon nanotubes were introduced into the polyamide coating. The zwitterion functional groups exposed at the membrane surface also interacted with the feed water to form a strong hydration layer, which results in improved surface biofouling resistance. The adsorption rate of protein foulants on the nanocomposite membrane surface was significantly reduced compared to the control membrane without CNTs, and the adsorbed fouling layer could be easily removed by flushing with water. After washing, the nanocomposite membrane recovered 100% of the decreased water flux whereas the control membrane only recovered 10% of the decreased flux resulting in a permanent loss of 30% in water permeation. We have therefore demonstrated that advanced materials like CNTs can be synthesized with desired functional groups, and can be embedded into traditional RO membranes to simultaneously resolve the challenge of low flux and surface fouling in the current desalination process. / Ph. D.
98

Meeting the Fixed Water Demand of MSF Desalination using Scheduling in gPROMS

Sowgath, Md Tanvir, Mujtaba, Iqbal January 2015 (has links)
Yes / Multi-Stage Flash (MSF) desalination process has been used for decades for making fresh water from seawater and is the largest sector in desalination industries. In this work, dynamic optimisation of MSF desalination is carried out using powerful and robust dynamic simulation and optimisation software called gPROMS model builder. For a fixed freshwater demand, a number of optimal combinations of the factors such as heat transfer area, brine flow rate, cooling water flow rate, steam flow in brine heater, Top Brine Temperature, the number of stages, etc. are determined with the objective of maximising the performance ratio of the process (defined as the amount of fresh water produced per unit of energy input) considering the seasonal variations. An attempt has been made to develop an operational schedule for a particular day using dynamic optimisation.
99

Flexible design and operation of multi-stage reverse osmosis desalination process for producing different grades of water with maintenance and cleaning opportunity

Al-Obaidi, Mudhar A.A.R., Rasn, K.H., Aladhwani, S.H., Kadhom, M., Mujtaba, Iqbal 20 April 2022 (has links)
Yes / The use of Reverse Osmosis (RO) process in seawater desalination to provide high-quality drinking water is progressively increased compared to thermal technologies. In this paper, multistage spiral wound RO desalination process is considered. Each stage consists of several pressure vessels (PVs) organised in parallel with membrane modules in each PV being organised in series. This allows disconnecting a set of PVs and membrane modules depending on the requirement of cleaning and maintenance. While this flexibility offers the opportunity of generating several RO configurations, we presented only four such configurations of the RO system and analysed them via simulation and optimisation. Production of different grades of water catering different needs of a city is also considered for each of these configurations. The optimisation has resulted in the optimal operating conditions, which maximises the water productivity and minimises the specific energy consumption of the proposed configurations for a given water grade in terms of salinity. For instance, the results indicate that the proposed RO networks can produce drinking water of 500 ppm salinity with a minimum specific energy consumption of 3.755 kWh/m3. The strategy offers the production of different grades of water without plant shutdown while maintaining the membrane modules throughout the year.
100

Modeling and simulation of VMD desalination process by ANN

Cao, W., Liu, Q., Wang, Y., Mujtaba, Iqbal 21 August 2015 (has links)
Yes / In this work, an artificial neural network (ANN) model based on the experimental data was developed to study the performance of vacuum membrane distillation (VMD) desalination process under different operating parameters such as the feed inlet temperature, the vacuum pressure, the feed flow rate and the feed salt concentration. The proposed model was found to be capable of predicting accurately the unseen data of the VMD desalination process. The correlation coefficient of the overall agreement between the ANN predictions and experimental data was found to be more than 0.994. The calculation value of the coefficient of variation (CV) was 0.02622, and there was coincident overlap between the target and the output data from the 3D generalization diagrams. The optimal operating conditions of the VMD process can be obtained from the performance analysis of the ANN model with a maximum permeate flux and an acceptable CV value based on the experiment.

Page generated in 0.0686 seconds