• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Degradação de agrotóxicos em água por Alumínio de valência zero (Al(vz)) / Degradation of pesticides from water by zero-valent Aluminum (Al(vz))

Fontes, Luiza Lacerda Martins 04 August 2017 (has links)
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2018-04-02T18:51:54Z No. of bitstreams: 1 texto completo.pdf: 1732183 bytes, checksum: 120110f031230a816000d2afca741023 (MD5) / Made available in DSpace on 2018-04-02T18:51:54Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1732183 bytes, checksum: 120110f031230a816000d2afca741023 (MD5) Previous issue date: 2017-08-04 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / É frequente a utilização de agrotóxicos na agricultura para controlar as pragas e manter a qualidade dos produtos. Entretanto, o uso abusivo destes compostos pode trazer problemas para a população e o meio ambiente. Por consequência, técnicas baseadas na geração de radicais hidroxila ( • OH) (Processos Oxidativos Avançados - POA’s), pelo sistema Al(vz)/H + /ar, vêm sendo investigada nos últimos anos com o objetivo de degradar compostos orgânicos responsáveis pela contaminação da água. Diante disso, neste trabalho, buscou-se avaliar a capacidade de uma placa de alumínio (Al(vz)) para a degradação de agrotóxicos em água. O estudo dos parâmetros que influenciam no mecanismo de degradação foi realizado utilizando-se como composto modelo o agrotóxico parationa metílica. Foram avaliados os efeitos dos seguintes parâmetros: tempo de ativação da placa de Al(vz) por lavagem ácida, pH e temperatura, oxigenação/desoxigenação da solução, adição de H 2 O 2 e de catalisadores Fe 2+ e Fe 3+ no sistema reacional. Os resultados obtidos mostraram que em valores baixos de pH (pH 1,5), 97% da parationa metílica foi degradada após 3 horas de reação. Já em meio fortemente alcalino (pH 12,0), com apenas 60 min de reação, 100% de degradação foi alcançada a 25 oC. A temperatura da solução também influenciou diretamente na cinética de degradação da parationa metílica, uma vez que temperaturas elevadas (55 oC) necessitaram de menores tempos para a completa degradação da parationa metílica. A oxigenação/desoxigenação da solução não teve influência na degradação do agrotóxico, uma vez que as constantes cinéticas de degradação foram próximas em todos os sistemas estudados. Entretanto, a adição do agente oxidante H 2 O 2 no meio reacional nas concentrações de 10 e 20 mmol/L influenciaram de forma negativa a cinética de degradação, indicando que possivelmente não houve a formação de radicais • OH in situ. Já a adição de Fe 2+ e Fe 3+ nas concentrações de 100 μmol/L catalisaram a degradação da parationa metílica, sendo o Fe 2+ mais eficiente do que o Fe 3+ (constante de velocidade k= 0,0377 e 0,0275 min -1 , respectivamente). As cinéticas de degradação foram estudadas seguindo o modelo de pseudo 1a ordem. O processo de degradação otimizado foi aplicado para outros agrotóxicos de diferentes classes (atrazina, parationa metílica, flutriafol e azoxistrobina). Todos os agrotóxicos tiveram porcentagens de degradação entre 88% e 100% após 300 min de reação. Durante os ensaios de degradação, observou-se que a placa de Al(vz) sofria o processo de corrosão em meio ácido e básico. As concentrações encontradas de Al 3+ em pH 1,5 e 12 foram de aproximadamente 10 mg/L e 1,6 g/L, respectivamente. Portanto, diante do exposto, o sistema Al(vz)/H + /ar mostrou-se prático e eficiente para a degradação de agrotóxicos em água. / Agrochemicals are often used in agriculture to control pests and to maintain the products qualities. However, abuse of these compounds can cause problems for the population and environment. Therefore, techniques based on generation of hydroxyl radicals ( • OH) (Advanced Oxidative Processes - AOPs) by Al(zv)/ H + / air system have been investigated in recent years objectifying degrading organic compounds, which are responsible for water contamination. The aim of this work was to evaluate the capacity of an aluminum plate (Al(zv)) for the pesticides degradation in water. The study of the parameters that influence the mechanism of degradation was carried out using the agrochemical methyl parathion as model. The following parameters effects was evaluated: Al(zv) plate activation time by acid washing, pH and temperature, oxygenation/deoxygenation of the solution, addition of H 2 O 2 , Fe 2+ and Fe 3+ catalysts in the reaction system. The results showed that at low pH values (pH 1.5), 97% of the methyl parathion was degraded after 3 hours of reaction. At strongly alkaline medium (pH 12.0), with only 60 min of reaction, 100% of degradation was reached at 25 °C. The temperature of the solution also directly influenced the degradation kinetics of methyl parathion, since high temperatures (55 °C) required shorter times for the complete degradation of the agrochemical. The oxygenation/deoxygenation of the solution had no influence on the degradation of the pesticide, since the degradation kinetics constants were close in all systems studied. However, the addition of the H 2 O 2 oxidizing agent in the reaction medium at concentrations of 10 and 20 mmol/L had a negative influence on degradation kinetics, indicating that maybe no • OH in situ was generated. On the other hand, 100 μmol/L Fe 2+ and Fe 3+ catalyzed the degradation of methyl parathion, with Fe 2+ being more efficient than Fe 3+ (constant velocity k = 0.0377 and 0.0275 min -1 , respectively). The kinetics of degradation were studied following the pseudo first order model. The optimized degradation process was applied to other agrochemicals of different classes (atrazine, methyl parathion, flutriafol and azoxystrobin). All agrochemicals had percentages of degradation between 88% and 100% after 300 min of reaction. During the degradation tests, the Al(zv) plate was observed to undergo acid and basic corrosion. The concentrations found of Al 3+ at pH 1.5 and 12 were approximately 10 mg/L and 1.6 g/L, respectively. Therefore, in view of the above, the Al (zv)/H + /air system proved to be practical and efficient for the degradation of pesticides in water.
2

Produção, caracterização e aplicação de biossurfactante como agente de remediação em ambiente marinho

ALMEIDA, Darne Germano de 22 February 2017 (has links)
Submitted by Mario BC (mario@bc.ufrpe.br) on 2018-03-14T12:40:00Z No. of bitstreams: 1 Darne Germano de Almeida.pdf: 17175209 bytes, checksum: cdf4af80710a872ffc91bc54a2b03ec3 (MD5) / Made available in DSpace on 2018-03-14T12:40:00Z (GMT). No. of bitstreams: 1 Darne Germano de Almeida.pdf: 17175209 bytes, checksum: cdf4af80710a872ffc91bc54a2b03ec3 (MD5) Previous issue date: 2017-02-22 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Financiadora de Estudos e Projetos - Finep / Contamination by petroleum and its by-products causes serious damage, which has awakened great attention to the development and application of innovative technologies for the removal of these contaminants. In this sense, this work aimed to produce a biosurfactant of Candida tropicalis UCP0996 from industrial residues as substrates for application as a remediation agent. Biosurfactant production optimization was evaluated for the influence of the variables concentrations of molasses, corn steep liquor, residual canola oil and inoculum size on the response variables of surface tension and biosurfactant yield. The optimum conditions selected for the fermentative process were 2.5% of residual canola oil, 2.5% of corn steep liquor, 2.5% of molasses and 2% of inoculum size, with reduction of surface tension and yield of 29.98 mN/m and 4.19 g/L, respectively. The biosurfactant was produced in bioreactors, yielding yields of 5.87 g/L (2 L bioreactor) and 7.36 g/L (50 L bioreactor). The tensioactive and emulsifying capacity of the biosurfactant was investigated under extreme conditions of temperature, salinity, pH and heating time, indicating their stability. Chemical composition investigation of the by Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR) and gas chromatography coupled to mass spectrometry (GC-MS) revealed that the biosurfactant studied is an anionic glycolipid with critical micelle concentration (CMC) of 600 mg/L and low hydrophobicity. After the characterization, the biomolecule had its toxicity investigated against the microcrustacean Artemia salina, proving to be innocuous against this environmental indicator. The biosurfactant was then subjected to different methodologies for the formulation of a commercial additive. The biomolecule remained stable for 120 days at room temperature after addition of potassium sorbate as a preservative. The application of the biomolecule in petroderivative removal and degradation processes demonstrated its ability to disperse about 71% of the motor oil into seawater, to remove 67% of the oil adsorbed on a porous surface and to increase the degradation of the oil by microorganisms. Based on the results, it was possible to establish the biotechnological potential of the product obtained for application in the industrial and environmental area, replacing the synthetic surfactants. / A contaminação por petróleo e seus derivados causam prejuízos graves, o que tem despertado grande atenção para o desenvolvimento e aplicação de tecnologias inovadoras para a remoção desses contaminantes. Nesse sentido, este trabalho teve por objetivo produzir um biossurfactante de Candida tropicalis UCP0996 a partir de resíduos industriais como substratos para aplicação como agente de remediação. A otimização da produção do biossurfactante foi avaliada quanto à influência das variáveis concentrações de melaço, milhocina, óleo de canola residual e tamanho do inóculo sobre as variáveis resposta tensão superficial e rendimento em biossurfactante. As condições ótimas selecionadas para o processo fermentativo foram 2,5% de óleo de canola residual, 2,5% de milhocina, 2,5% de melaço e tamanho do inóculo de 2%, com redução da tensão superficial e rendimento de 29,98 mN/m e 4,19 g/L, respectivamente. O biossurfactante foi produzido em biorreatores, alcançando rendimentos de 5,87 g/L (biorreator de 2 L) e 7,36 g/L (biorreator de 50 L). A capacidade tensoativa e emulsificante do biossurfactante foi investigada sob condições extremas de temperatura, salinidade, pH e tempo de aquecimento, indicando sua estabilidade. A investigação da composição química por espectroscopia no infravermelho por transformada de Fourier (FTIR), ressonância magnética nuclear de prótons (1H RMN) e cromatografia gasosa e acoplada a espectroscopia de massa (GC-MS) revelou que o biossurfactante estudado é um glicolipídeo de natureza aniônica com concentração micelar crítica (CMC) de 600 mg/L e de baixa hidrofobicidade. Após a caracterização, a biomolécula teve sua toxicidade investigada frente ao microcrustáceo Artemia salina, demonstrando ser inócua frente a este indicador ambiental. Em seguida, o biossurfactante foi submetido a diferentes metodologias para ser formulado como aditivo comercial. A biomolécula manteve-se estável ao longo de 120 dias à temperatura ambiente após adição de sorbato de potássio como conservante. A aplicação da biomolécula em processos de remoção e degradação de petroderivado demonstrou sua capacidade de dispersar cerca de 71% do óleo de motor em água do mar, de remover 67% do óleo adsorvido em superfície porosa e de aumentar a degradação do óleo pelos micro-organismos marinhos autóctones. Com base nos resultados, foi possível estabelecer o potencial biotecnológico do produto obtido para aplicação na área industrial e ambiental, em substituição aos surfactantes sintéticos.
3

Produção e formulação de biossurfactante de Pseudomonas cepacia UCP 6659 para aplicação na remoção de poluentes ambientais gerados na indústria de petróleo

SILVA, Rita de Cássia Freire Soares da 21 February 2017 (has links)
Submitted by Mario BC (mario@bc.ufrpe.br) on 2018-03-14T13:05:57Z No. of bitstreams: 1 Rita de Cassia Freire Soares da Silva.pdf: 22262452 bytes, checksum: 68105ddaa4b06db573208e3fc94b0a5f (MD5) / Made available in DSpace on 2018-03-14T13:05:57Z (GMT). No. of bitstreams: 1 Rita de Cassia Freire Soares da Silva.pdf: 22262452 bytes, checksum: 68105ddaa4b06db573208e3fc94b0a5f (MD5) Previous issue date: 2017-02-21 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Financiadora de Estudos e Projetos - Finep / The search for natural, biodegradable and less toxic compounds has stimulated the development of alternative products. Biosurfactants, microbiologically obtained molecules, have become an important strategy in obtaining compounds more compatible with the environment. In this sense, we evaluated the production, characterization and application of a biosurfactant obtained from Pseudomonas cepacia UCP 6659 in the removal of petroleum derivative in soils and waters. Initially, the cultivation conditions were statistically optimized through a central rotational compound design (CCRD) regarding the influence of the variables culture time, inoculum concentration and rotation speed. The selected biosurfactant was characterized for the stability of the tensoactive and toxicological properties. Its production was investigated in a semi-industrial bioreactor of 50 L. The biosurfactant was formulated using three conservation methods and stored for 120 days. Subsequently, the biosurfactant was tested in the decontamination of petroleum derivatives and in bioremediation process. As results, the most significant levels selected by the DCCR were 250 rpm, 60h and inoculum of 1.5 %, reaching a surface tension of 27 mN/m, a yield of 8.0 g / L and a CMC of 600 mg / L. The chemical characterization (FTIR, 1H NMR and GC-MS) revealed its glycolipid and anionic nature. The biotensoativo presented efficient emulsifying activity in motor oil above 90 % and stability against extreme conditions (120°C, 12 % NaCl and pH of 2 to 12). The biosurfactant was non-toxic to microcrack Artemia salina and cabbage seeds (Brassica oleracea). With the increase of the scale of production, a concentration of 40.5 g / L in biosurfactant was reached, with a surface tension of 29 mN/m. The biosurfactant showed stability in all conservation methods, showing that it is economically feasible for large scale application, due to the low cost of obtaining the formulated product, estimated at around US$ 0.14-0.15 / L, and can be produced At a reduced cost compared to those commercially available on the world market. The biosurfactant demonstrated efficacy of up to 75 % recovery of residual oil from samples of oil-saturated sand, 81 % dispersion of petroderivative in sea water and recovery of 90 % of motor oil on solid surface. The formulated product reached 76.55 % oil removal, 84.5 % in sea stones, and promoted 70 % oil biodegradation in sea water. Therefore, the biosurfactant produced by P. cepacia presents potential for application in the petroleum industry and in the decontamination of petroderivatives in the environment. / A busca por compostos naturais, biodegradáveis e menos tóxicos tem estimulado o desenvolvimento de produtos alternativos. Os biossurfactantes, moléculas obtidas por via microbiológica, tornaram-se uma estratégia importante na obtenção de compostos mais compatíveis com o meio ambiente. Neste sentido, foram avaliadas a produção, caracterização e aplicação de um biossurfactante obtido de Pseudomonas cepacia UCP 6659 na remoção de derivado de petróleo em solos e águas. Inicialmente, as condições de cultivo foram estatisticamente otimizadas através de um delineamento composto central rotacional (CCRD) quanto à influência das variáveis tempo de cultivo, concentração do inóculo e velocidade de rotação. O biossurfactante selecionado foi caracterizado quanto à estabilidade das propriedades tensoativas e toxicológicas. Investigou-se sua produção em biorreator semi-industrial de 50 L. O biossurfactante foi formulado utilizando três métodos de conservação, sendo armazenado durante 120 dias. Posteriormente, o biossurfactante foi testado na descontaminação de derivados de petróleo e em processo de biorremediação. Como resultados, os níveis mais significativos selecionados pelo (DCCR) foram 250 rpm, 60h e inóculo de 1,5 %, alcançando uma tensão superficial de 27 mN/m, um rendimento de 8,0 g/L e uma CMC de 600 mg/L. A caracterização química (FTIR, 1H RMN e GC-MS) revelou sua natureza glicolipídica e aniônica. O biotensoativo apresentou eficiente atividade emulsificante em óleo de motor acima de 90 % e estabilidade frente a condições extremas (120°C, 12 % de NaCl e pH de 2 a 12). O biossurfactante foi atóxico ao microcrustáceo Artemia salina e as sementes de repolho (Brassica oleracea). Com o aumento de escala de produção foi alcançado uma concentração de 40,5 g/L em biossurfactante, com uma tensão superficial de 29 mN/m. O biossurfactante apresentou estabilidade em todos os métodos de conservação, demonstrando ser economicamente viável para aplicação em larga escala, devido ao baixo custo de obtenção do produto formulado, estimado em torno de US $ 0,14-0,15/L, podendo ser produzido a um custo reduzido em comparação aos comercialmente disponíveis no mercado mundial. O biossurfactante demonstrou eficácia de até 75 % na recuperação de óleo residual a partir de amostras de areia saturada com óleo, dispersão de 81 % de petroderivado em água do mar e recuperação de 90 % de óleo de motor em superfície sólida. O produto formulado atingiu uma remoção de óleo em solo de 76,55 %, 84,5 % em pedras marinhas, e promoveu uma biodegradação de óleo de 70 % em água do mar. Portanto, o biossurfactante produzido por P. cepacia apresenta potencial para aplicação na indústria de petróleo e na descontaminação de petroderivados no ambiente.
4

Produção de biossurfactante comercial por Candida lipolytica UCP 0998 cultivada em resíduos agroindustriais para aplicação na indústria de petróleo e metais pesados

SANTOS, Danyelle Khadydja Felix dos 20 February 2017 (has links)
Submitted by Mario BC (mario@bc.ufrpe.br) on 2018-03-14T13:22:12Z No. of bitstreams: 1 Danyelle Khadydja Felix dos Santos.pdf: 27852030 bytes, checksum: 9c7b67c95867750ad685525f6607b8d1 (MD5) / Made available in DSpace on 2018-03-14T13:22:12Z (GMT). No. of bitstreams: 1 Danyelle Khadydja Felix dos Santos.pdf: 27852030 bytes, checksum: 9c7b67c95867750ad685525f6607b8d1 (MD5) Previous issue date: 2017-02-20 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Financiadora de Estudos e Projetos - Finep / Surfactants are amphipathic powerful agents with application in various industries, especially in the oil industry. Many types of chemically synthesized surfactants are used today, although the development of alternative products, biodegradable and less toxic as the so-called biosurfactants agents obtained by microbiological route, becomes an important strategy to achieve products adequate for use in the environment, and with specific properties and applications. Many biosurfactants have been produced, although few are marketed due to the high production cost involved in obtaining these compounds, especially as regards the use of expensive substrates and purification processes. In this sense, this project proposed studies directed towards maximizing the production of a low cost biosurfactant for application in environments contaminated by petroleum derivates and heavy metals. Experiments were conducted to maximize the production of the biosurfactant from Candida lipolytica UCP0988 cultivated on 5% animal fat and 2.5%corn steep liquor using a 23 full factorial design. The effects and interactions of the agitation speed (200, 300 and 400rpm), the variables aeration (0, 1 and 2vvm) and time of cultivation (48, 96 and 144h) on the surface tension, yield and biomass were evaluated. The results showed that the variable time of cultivation had positive influence on the production of biosurfactant, while the increase of the variables aeration and agitation showed a negative effect. This study investigated the large-scale production, characterization, evaluation of toxicity and economic analysis of the biosurfactant produced by Candida lipolytica UCP 0988 grown in amedium containing 5% animal fat and 2.5% corn steep liquor. The kinetics of biosurfactant production was described. The biosurfactant producedin the stationary growth phaseunder agitation of 200rpm andin the absence of aeration reducedthe surface tension of the medium to 28mN/m after 96 h, yielding 10.0 g/L ofisolated biosurfactant in a 2 L bioreactor. The production was maximized in a 50 L bioreactor, reaching 40 g/L biosurfactant and 25 mN/m. The cell biomasswas quantifiedand characterizedfor usein animal nutrition. Chemical structures of the biosurfactant were identified using Fourier transform infrared spectroscopy (FTIR) and Nuclear magnetic resonance spectroscopy (NMR). The crude biosurfactant was not toxic to the bivalve Anomalocardia brasiliana, to the microcrustacean Artemia salina, or three species of vegetables seeds. The formulated biosurfactant was also not toxic to the fish Poecilia vivipara. The addition of the biosurfactant to seawater stimulated the degradation of motor oil via the activity of the indigenous microorganisms. In tests carried out with seawater, the crude biosurfactant demonstrated 80% oil spreading efficiency in the screening dispersion test. Regarding the swirling bottle test, the dispersion rate was 50% for the isolated biosurfactant at a concentration twice the critical micelle concentration. The biosurfactant proved to be efficient in detergency tests, as it removed 70% of motor oil from contaminated cotton cloth. Application for the removal of heavy metals demonstrated that the crude biosurfactant removed 30 to 40% of Cu and Pb from standard sand, while the isolated biosurfactant removed approximately 30% of the heavy metals. The HCl solution tested removed 60 to 50% of Cu, Pb and Zn and greatly increased the removal of metals when used together with the biosurfactant. The conductivity of the solutions containing Cd and Pb was sharply reduced by the biosurfactant. To provide a commercial surfactant, the biosurfactant was subjected to a preservation method based on the addition of 0.2% potassium sorbate over 120 days to estimate the validity of the product to be offered to the market. The formulated biosurfactant was analysed for emulsification and surface tension under different pH values, temperatures and the addition of NaCl. The results showed that the formulation did not cause significant changes in the tensoactive capacity of the biomolecule, indicating the possibility of its use in specific environmental conditions. The biosurfactant from C. lipolytica demonstrated versatility as a bioremediation agent of organic and inorganic pollutants as well as potential for industrial application as a stable, safe commercial agent. / Os surfactantes são poderosos agentes anfipáticos com aplicação em vários segmentos industriais, especialmente nas indústrias petrolíferas. Muitos tipos de surfactantes quimicamente sintetizados são hoje utilizados; entretanto o desenvolvimento de produtos alternativos, biodegradáveis e menos tóxicos, como os chamados biossurfactantes, agentes obtidos por via microbiológica, torna-se uma estratégia importante na obtenção de produtos mais compatíveis com o meio ambiente e na ampliação das propriedades específicas e aplicações desses compostos. Muitos biossurfactantes têm sido produzidos, embora poucos sejam comercializados em virtude do alto custo de produção envolvido na obtenção desses compostos, principalmente no que se refere à utilização de substratos custosos e aos processos de purificação. Neste sentido, este trabalho propôs estudos para a produção de um biossurfactante de baixo custo para aplicação na despoluição de ambientes contaminados por derivados de petróleo e metais pesados. A maximização da produção do biossurfactante de Candida lipolytica UCP0988 cultivada em 5% de gordura animal e 2,5% de milhocina, foi inicialmente realizada em biorreator de 2L a partir de um planejamento fatorial 23 com ponto central. Os efeitos e interações da velocidade de agitação (200, 300 e 400rpm), aeração (0, 1 e 2vvm) e tempo de cultivo (48,96 e 144h) sobre a tensão superficial, o rendimento e a biomassa foram avaliados. Os resultados mostraram que o tempo de cultivo teve uma influência positiva na produção do biossurfactante, enquanto que o aumento da aeração e da agitação provocou um efeito negativo. A produção do biossurfactante em condições de cultivo maximizadas de 200 rpm e na ausência de aeração, alcançou valores em torno de 10,0 g/L em biossurfactante, com redução da tensão superficial para 28 mN/m após 96 horas. A curva de produção do biossurfactante demonstrou que a biomolécula foi produzida na fase estacionária de crescimento como metabólito secundário. Com o scale-up de produção do biossurfactante em reator de 50L, 40 g/L de biossurfactante foram produzidos, com tensão superficial de 25 mN/m. A biomassa celular foi quantificada e caracterizada para utilização como complemento nutricional em ração animal. A estrutura química do biossurfactante foi identificada utilizando Espectroscopia de infravermelho de Fourier (FTIR) e Espectroscopia de ressonância magnética nuclear (RMN). O biossurfactante bruto não apresentou toxicidade frente ao bivalve Anomalocardia brasiliana e ao microcrustáceo Artemia salina e nem frente a três espécies de sementes de hortaliças testadas. O biossurfactante formulado também não apresentou toxicidade frente ao peixe Poecilia vivipara. A adição de biossurfactante à água do mar estimulou a degradação do óleo de motor através da ação dos micro-organismos autóctones. Testes de dispersão demonstraram 80% de dispersão do óleo na água do mar, enquanto que os experimentos conduzidos em garrafas cilíndricas demonstraram valores em torno de 50% de dispersão para o biossurfactante isolado no dobro de sua concentração micelar crítica (1,6%). O biossurfactante mostrou-se eficiente em testes de detergência, com remoção de 70% de óleo de motor em tecido de algodão. A aplicação do biossurfactante bruto na remoção de metais pesados em amostras de areia padrão demonstrou 30 e 40% de remoção de Cu e Pb, respectivamente, enquanto que o biossurfactante isolado removeu cerca de 30% dos metais pesados. A solução de HCl removeu 60-50% de Cu, Pb e Zn e aumentou consideravelmente a remoção dos metais quando utilizada juntamente com o biossurfactante. A condutividade de soluções aquosas de efluente de mina preparado em laboratório contendo Cd e Pb foi drasticamente reduzida pelo biossurfactante. Com a finalidade de fornecer um produto comercial com vida de prateleira prolongada, o biossurfactante foi submetido ao método de conservação baseado na adição de sorbato de potássio a 0,2% e testado ao longo de 120 dias a fim estimar a eficácia do produto a ser oferecido no mercado. O biossurfactante formulado foi então analisado quanto à emulsificação à tensão superficial, sob diferentes valores de pH, temperatura e a adição de NaCl. Os resultados mostraram que a formulação não causou alterações significativas na capacidade tensoativa da biomolécula, indicando a possibilidade da sua utilização em condições ambientais específicas. Os resultados obtidos nesse trabalho demonstraram a versatilidade do surfactante de C. lipolytica como agente de biorremediação de poluentes orgânicos e inorgânicos, bem como potencial para aplicação industrial como um agente comercial estável e seguro.

Page generated in 0.4266 seconds