Spelling suggestions: "subject:"escritores dde características"" "subject:"escritores dee características""
1 |
Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes / Characterization of lesions in ultrasound and elastography images using machine learning methodsMarcomini, Karem Daiane 30 October 2017 (has links)
Muitos procedimentos vêm sendo desenvolvidos para auxiliar no diagnóstico precoce do câncer de mama. Devido a subjetividade na interpretação de imagens, os sistemas de diagnóstico auxiliado por computador (CADx) têm oferecido ao especialista uma segunda opinião mais precisa e confiável. Nesse propósito, essa pesquisa apresenta uma metodologia de investigação da potencialidade diagnóstica de um sistema computacional na classificação de achados suspeitos em imagens de ultrassom modo-B e de elastografia da mama. A base de dados foi constituída por 31 lesões malignas e 52 benignas e um conjunto adicional contendo 206 lesões de ultrassom modo-B (144 benignas e 62 malignas) para a realização dos testes de aprendizado de máquina. O contorno foi determinado automaticamente e através do delineamento manual de três radiologistas sob a imagem de ultrassom modo-B e, em seguida, mapeado na imagem elastográfica. As lesões foram classificadas pelo sistema CADx desenvolvido para ultrassom modo-B e elastografia do tipo strain. Os dados foram avaliados por meio da sensibilidade, especificidade e AUC. O sistema CADx desenvolvido proporcionou equivalência diagnóstica para a classificação das lesões a partir das diversas formas de determinação do contorno (manual e automática), permitindo a redução da variabilidade. Além disso, o sistema apontou resultados superiores à análise visual do radiologista que, quando considerado o resultado fornecido pela associação entre as imagens de ultrassom modo-B e elastografia, proporcionou um aumento comparativo de cerca de 7% em sensibilidade e 17,2% em especificidade nos testes com o sistema CADx usando o contorno feito pelo radiologista mais experiente. Além disso, constatou-se uma influência positiva no uso da ferramenta computacional pelos radiologistas, pois, na média, seus índices de sensibilidade e especificidade diagnóstica aumentaram também em relação à situação de análise convencional, passando de 87,1% e 55,8% para 90,3% e 73,1%, respectivamente. / Many procedures have been developed to aid in the early detection and diagnosis of breast cancer. In this context, Computer-Aided Diagnosis (CADx) systems were designed to provide to the specialist a reliable second opinion. This study presents the proposal of investigating the diagnostic ability of a computational system in the characterization of suspicious findings in B-mode ultrasound and breast elastography imaging. The database consisted of 31 malignant and 52 benign lesions and an additional data set containing 206 lesions (144 benign and 62 malignant) seen only on the B-mode ultrasound for performing the machine learning tests. Three radiologists drew manually the contour of the lesions in B-mode ultrasound and we used an automatic technique to segment the lesions. Then, the contour was mapped in the elastography image. The lesions were classified using the CADx system developed for B-mode ultrasound and strain elastography. We calculated the sensitivity, specificity and AUC to evaluate the data. The developed CADx system provided a diagnostic concordance in the classification of breast lesions from the different ways of contour determination (manual and automatic), allowing to reduce the diagnostic variability. In addition, the CADx system showed superior results to the visual analysis of the radiologist. When the radiologist associated both examinations (B-mode ultrasound and elastography), his visual analysis provided 87.10%, 55.77% and 0.714 of sensitivity, specificity and AUC, respectively. When we considered the result provided by the association between B-mode ultrasound and elastography images, the CADx system provided a comparative increase of about 7% of sensitivity and 17.2% of specificity, using the contour delimited by the most experienced radiologist. In addition, a positive influence was observed in the use of the computational tool by radiologists, since, on average, their sensitivity and specificity indexes also increased in relation to the conventional analysis, from 87.1% and 55.8% to 90.3% and 73.1%, respectively.
|
2 |
Caracterização de lesões em imagens digitais de ultrassonografia e elastografia da mama utilizando técnicas inteligentes / Characterization of lesions in ultrasound and elastography images using machine learning methodsKarem Daiane Marcomini 30 October 2017 (has links)
Muitos procedimentos vêm sendo desenvolvidos para auxiliar no diagnóstico precoce do câncer de mama. Devido a subjetividade na interpretação de imagens, os sistemas de diagnóstico auxiliado por computador (CADx) têm oferecido ao especialista uma segunda opinião mais precisa e confiável. Nesse propósito, essa pesquisa apresenta uma metodologia de investigação da potencialidade diagnóstica de um sistema computacional na classificação de achados suspeitos em imagens de ultrassom modo-B e de elastografia da mama. A base de dados foi constituída por 31 lesões malignas e 52 benignas e um conjunto adicional contendo 206 lesões de ultrassom modo-B (144 benignas e 62 malignas) para a realização dos testes de aprendizado de máquina. O contorno foi determinado automaticamente e através do delineamento manual de três radiologistas sob a imagem de ultrassom modo-B e, em seguida, mapeado na imagem elastográfica. As lesões foram classificadas pelo sistema CADx desenvolvido para ultrassom modo-B e elastografia do tipo strain. Os dados foram avaliados por meio da sensibilidade, especificidade e AUC. O sistema CADx desenvolvido proporcionou equivalência diagnóstica para a classificação das lesões a partir das diversas formas de determinação do contorno (manual e automática), permitindo a redução da variabilidade. Além disso, o sistema apontou resultados superiores à análise visual do radiologista que, quando considerado o resultado fornecido pela associação entre as imagens de ultrassom modo-B e elastografia, proporcionou um aumento comparativo de cerca de 7% em sensibilidade e 17,2% em especificidade nos testes com o sistema CADx usando o contorno feito pelo radiologista mais experiente. Além disso, constatou-se uma influência positiva no uso da ferramenta computacional pelos radiologistas, pois, na média, seus índices de sensibilidade e especificidade diagnóstica aumentaram também em relação à situação de análise convencional, passando de 87,1% e 55,8% para 90,3% e 73,1%, respectivamente. / Many procedures have been developed to aid in the early detection and diagnosis of breast cancer. In this context, Computer-Aided Diagnosis (CADx) systems were designed to provide to the specialist a reliable second opinion. This study presents the proposal of investigating the diagnostic ability of a computational system in the characterization of suspicious findings in B-mode ultrasound and breast elastography imaging. The database consisted of 31 malignant and 52 benign lesions and an additional data set containing 206 lesions (144 benign and 62 malignant) seen only on the B-mode ultrasound for performing the machine learning tests. Three radiologists drew manually the contour of the lesions in B-mode ultrasound and we used an automatic technique to segment the lesions. Then, the contour was mapped in the elastography image. The lesions were classified using the CADx system developed for B-mode ultrasound and strain elastography. We calculated the sensitivity, specificity and AUC to evaluate the data. The developed CADx system provided a diagnostic concordance in the classification of breast lesions from the different ways of contour determination (manual and automatic), allowing to reduce the diagnostic variability. In addition, the CADx system showed superior results to the visual analysis of the radiologist. When the radiologist associated both examinations (B-mode ultrasound and elastography), his visual analysis provided 87.10%, 55.77% and 0.714 of sensitivity, specificity and AUC, respectively. When we considered the result provided by the association between B-mode ultrasound and elastography images, the CADx system provided a comparative increase of about 7% of sensitivity and 17.2% of specificity, using the contour delimited by the most experienced radiologist. In addition, a positive influence was observed in the use of the computational tool by radiologists, since, on average, their sensitivity and specificity indexes also increased in relation to the conventional analysis, from 87.1% and 55.8% to 90.3% and 73.1%, respectively.
|
3 |
Métodos para aproximação poligonal e o desenvolvimento de extratores de características de forma a partir da função tangencialCarvalho, Juliano Daloia de 12 September 2008 (has links)
Whereas manually drawn contours could contain artifacts related to hand tremor,
automatically detected contours could contain noise and inaccuracies due to limitations
or errors in the procedures for the detection and segmentation of the related regions. To
improve the further step of description, modeling procedures are desired to eliminate the
artifacts in a given contour, while preserving the important and significant details present
in the contour. In this work, are presented a couple of polygonal modeling methods,
first a method applied direct on the original contour and other derived from the turning
angle function. Both methods use the following parametrization Smin e µmax to infer
about removing or maintain a given segment. By the using of the mentioned parameters
the proposed methods could be configured according to the application problem. Both
methods have been shown eficient to reduce the influence of noise and artifacts while
preserving relevant characteristic for further analysis.
Systems to support the diagnosis by images (CAD) and retrieval of images by content
(CBIR) use shape descriptor methods to make possible to infer about factors existing
in a given contour or as base to classify groups with dierent patterns. Shape factors
methods should represent a value that is aected by the shape of an object, thus it
is possible to characterize the presence of a factor in the contour or identify similarity
among contours. Shape factors should be invariant to rotation, translation or scale. In
the present work there are proposed the following shape features: index of the presence
of convex region (XRTAF ), index of the presence of concave regions (V RTAF ), index
of convexity (CXTAF ), two measures of fractal dimension (DFTAF e DF1
TAF ) and the
index of spiculation (ISTAF ). All derived from the smoothed turning angle function.
The smoothed turning angle function represent the contour in terms of their concave and
convex regions.
The polygonal modeling and the shape descriptors methods were applied on the breast
masses classification issue to evaluate their performance. The polygonal modeling procedure proposed in this work provided higher compression and better polygonal fitness.
The best classification accuracies, on discriminating between benign masses and malignant
tumors, obtain for XRTAF , V RTAF , CXTAF , DFTAF , DF1
TAF and ISTAF , in terms
of area under the receiver operating characteristics curve, were 0:92, 0:92, 0:93, 0:93, 0:92
e 0:94, respectively. / Contornos obtidos manualmente podem conter ruídos e artefatos oriundos de tremores
da mão bem como contornos obtidos automaticamente podem os conter dado a problemas
na etapa de segmentação. Para melhorar os resultados da etapa de representação e
descrição, são necessários métodos capazes de reduzir a influência dos ruídos e artefatos
enquanto mantém características relevantes da forma. Métodos de aproximação poligonal
têm como objetivo a remoção de ruídos e artefatos presentes nos contornos e a melhor
representação da forma com o menor número possível de segmentos de retas. Nesta disserta
ção são propostos dois métodos de aproximação poligonal, um aplicado diretamente no
contorno e outro que é obtido a partir da função tangencial do contorno original. Ambos
os métodos fazem uso dos parâmetros Smin e µmax para inferirem sobre a permanência ou
remoção de um dado segmento. Com a utilização destes parâmetros os métodos podem
ser configurados para serem utilizados em vários tipos de aplicações. Ambos os métodos
mostram-se eficientes na remoção de ruídos e artefatos, enquanto que características
relevantes para etapas de pós-processamento são mantidas.
Sistemas de apoio ao diagnóstico por imagens e de recuperação de imagens por conte
údo fazem uso de métodos descritores de forma para que seja possível inferir sobre
características presentes em um dado contorno ou ainda como base para medir a dissimilaridade
entre contornos. Métodos descritores de características são capazes de representar
um contorno por um número, assim é possível estabelecer a presença de uma característica
no contorno ou ainda identificar uma possível similaridade entre os contornos. Métodos
para extração de características devem ser invariantes a rotação, translação e escala. Nesta
dissertação são propostos os seguintes métodos descritores de características: índice de
presença de regiões convexas (XRTAF ), índice da presença de regiões côncavas (V RTAF ),
índice de convexidade (CXTAF ), duas medidas de dimensão fractal (DFTAF e DF1
TAF ) e
o índice de espículos (ISTAF ). Todos aplicados sobre a função tangencial suavizada. A
função tangencial suavizada representa o contorno em termos de suas regiões côncavas e regiões convexas.
Os métodos de aproximação poligonal e descritores de características foram aplicados
para o problema de classificação de lesões de mama. Os resultados obtidos, mostraram
que os métodos de aproximação poligonal propostos neste trabalho resultam em polígonos
mais compactos e com melhor representação do contorno original. Os melhores resultados
de classificação, na discriminação entre lesões benignas e tumores malignos, obtidos por
XRTAF , V RTAF , CXTAF , DFTAF , DF1
TAF e ISTAF , em termos da área sob a curva ROC,
foram 0:92, 0:92, 0:93, 0:93, 0:92 e 0:94, respectivamente. / Mestre em Ciência da Computação
|
Page generated in 0.0982 seconds