• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 141
  • 131
  • 38
  • 16
  • 11
  • 10
  • 7
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 441
  • 441
  • 91
  • 85
  • 81
  • 75
  • 72
  • 48
  • 44
  • 42
  • 40
  • 40
  • 35
  • 30
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Separation in Optimal Designs for the Logistic Regression Model

January 2019 (has links)
abstract: Optimal design theory provides a general framework for the construction of experimental designs for categorical responses. For a binary response, where the possible result is one of two outcomes, the logistic regression model is widely used to relate a set of experimental factors with the probability of a positive (or negative) outcome. This research investigates and proposes alternative designs to alleviate the problem of separation in small-sample D-optimal designs for the logistic regression model. Separation causes the non-existence of maximum likelihood parameter estimates and presents a serious problem for model fitting purposes. First, it is shown that exact, multi-factor D-optimal designs for the logistic regression model can be susceptible to separation. Several logistic regression models are specified, and exact D-optimal designs of fixed sizes are constructed for each model. Sets of simulated response data are generated to estimate the probability of separation in each design. This study proves through simulation that small-sample D-optimal designs are prone to separation and that separation risk is dependent on the specified model. Additionally, it is demonstrated that exact designs of equal size constructed for the same models may have significantly different chances of encountering separation. The second portion of this research establishes an effective strategy for augmentation, where additional design runs are judiciously added to eliminate separation that has occurred in an initial design. A simulation study is used to demonstrate that augmenting runs in regions of maximum prediction variance (MPV), where the predicted probability of either response category is 50%, most reliably eliminates separation. However, it is also shown that MPV augmentation tends to yield augmented designs with lower D-efficiencies. The final portion of this research proposes a novel compound optimality criterion, DMP, that is used to construct locally optimal and robust compromise designs. A two-phase coordinate exchange algorithm is implemented to construct exact locally DMP-optimal designs. To address design dependence issues, a maximin strategy is proposed for designating a robust DMP-optimal design. A case study demonstrates that the maximin DMP-optimal design maintains comparable D-efficiencies to a corresponding Bayesian D-optimal design while offering significantly improved separation performance. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2019
152

An Investigative Study on Effects of Geometry, Relative Humidity, and Temperature on Fluid Flow Rate in Porous Media

January 2019 (has links)
abstract: Developing countries suffer from various health challenges due to inaccessible medical diagnostic laboratories and lack of resources to establish new laboratories. One way to address these issues is to develop diagnostic systems that are suitable for the low-resource setting. In addition to this, applications requiring rapid analyses further motivates the development of portable, easy-to-use, and accurate Point of Care (POC) diagnostics. Lateral Flow Immunoassays (LFIAs) are among the most successful POC tests as they satisfy most of the ASSURED criteria. However, factors like reagent stability, reaction rates limit the performance and robustness of LFIAs. The fluid flow rate in LFIA significantly affect the factors mentioned above, and hence, it is desirable to maintain an optimal fluid velocity in porous media. The main objective of this study is to build a statistical model that enables us to determine the optimal design parameters and ambient conditions for achieving a desired fluid velocity in porous media. This study mainly focuses on the effects of relative humidity and temperature on evaporation in porous media and the impact of geometry on fluid velocity in LFIAs. A set of finite element analyses were performed, and the obtained simulation results were then experimentally verified using Whatman filter paper with different geometry under varying ambient conditions. Design of experiments was conducted to estimate the significant factors affecting the fluid flow rate. Literature suggests that liquid evaporation is one of the major factors that inhibit fluid penetration and capillary flow in lateral flow Immunoassays. The obtained results closely align with the existing literature and conclude that a desired fluid flow rate can be achieved by tuning the geometry of the porous media. The derived statistical model suggests that a dry and warm atmosphere is expected to inhibit the fluid flow rate the most and vice-versa. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2019
153

Comparative Study of Structural Optimization Methods for Automotive Hood Frames

Ma, Jiachen January 2020 (has links)
No description available.
154

Vapor-grown carbon nanofiber/vinyl ester nanocomposites: designed experimental study of mechanical properties and molecular dynamics simulations

Nouranian, Sasan 30 April 2011 (has links)
The use of nanoreinforcements in automotive structural composites has provided promising improvements in their mechanical properties. For the first time, a robust statistical design of experiments approach was undertaken to demonstrate how key formulation and processing factors (nanofiber type, use of dispersing agent, mixing method, nanofiber weight fraction, and temperature) affected the dynamic mechanical properties of vapor-grown carbon nanofiber (VGCNF)/vinyl ester (VE) nanocomposites. Statistical response surface models were developed to predict nanocomposite storage and loss moduli as functions of significant factors. Only ~0.50 parts of nanofiber per hundred parts resin produced a roughly 20% increase in the storage modulus versus that of the neat VE at room temperature. Optimized nanocomposite properties were predicted as a function of design factors employing this methodology. For example, the use of highshear mixing (one of the mixing methods in the design) with the oxidized VGCNFs in the absence of dispersing agent or arbitrarily with pristine VGCNFs in the presence of dispersing agent was found to maximize the predicted storage modulus over the entire temperature range (30-120 °C). To study the key concept of interphase in thermoset nanocomposites, molecular dynamics simulations were performed to investigate liquid VE resin monomer interactions with the surface of a pristine VGCNF. A liquid resin having a mole ratio of styrene to bisphenol A-diglycidyl dimethacrylate monomers consistent with a 33 wt% styrene VE resin was placed in contact with both sides of pristine graphene sheets, overlapped like shingles, to represent the outer surface of a pristine VGCNF. The relative monomer concentrations were calculated in a direction progressively away from the surface of the graphene sheets. At equilibrium, the styrene/VE monomer ratio was higher in a 5 Å thick region adjacent to the nanofiber surface than in the remaining liquid volume. The elevated styrene concentration near the nanofiber surface suggests that a styrene-rich interphase region, with a lower crosslink density than the bulk matrix, could be formed upon curing. Furthermore, styrene accumulation in the immediate vicinity of the nanofiber surface might, after curing, improve the nanofiber-matrix interfacial adhesion compared to the case where the monomers were uniformly distributed throughout the matrix.
155

Investigation of support structures of a polymer powder bed fusion process by use of Design of Experiment (DoE) / Undersökning av stödstrukturer för en polymer-pulverbäddsfusionsprocess med användning av "Design of Experiment" (DoE)

Westbeld, Julius January 2018 (has links)
In this thesis, support structures of a polymer powder based process called XXXXXXXX™ are examined. These structures are crucial for most additive manufacturing processes. The effects of several factors on five industrially important characteristics of support structures are examined by use of the Design of Experiment (DoE) method. It describes the planning as well as the analysis of the experiments. The experiments are planned in a fractional factorial 211-5 design with 64 specimens, resulting in a resolution of IV. The analysis of the data is done by use of the ANOVA method, with which the significance of effects and interaction effects are checked. / I detta examensarbete undersöks stödstrukturer för en polymer-pulverbaserad process kallad XXXXXXXX. Dessa strukturer är väsentliga för de flesta aditiv tillverkning. Med hjälp av metoden "Design of Experiment" (DoE) undersöks effekten av flera faktorer på fem industriellt viktiga egenskaper för stödstrukturer. DoE beskriver både planeringen och analysen av experiment. Experimenten planeras i en fraktionerad faktoriell 211-5 design med 64 provexemplar vilket resulterar i en upplösning av IV. Dataanalysen genomförs med hjälp av ANOVA-metoden, med vilken signifikansen av effekter och interaktionseffekter kan undersökas.
156

Data-driven Approaches for Material Property Prediction and Process Optimization of Selective Laser Melting

Lu, Cuiyuan 24 May 2022 (has links)
No description available.
157

Process Optimization Towards The Development Of An Automated Cnc Monitoring System For A Simultaneous Turning And Boring Operation

Hernandez, Manuel 01 January 2012 (has links)
Manufacturing operations generate revenue by adding value to material through machine work and the cost associated with part production hinders the maximum profit available. In order to remain competitive, companies invest in research to maximize profit and reduce waste of manufacturing operations. This results in cheaper products for the customer without sacrificing quality. The purpose of this research was to identify machine settings of an Okuma LC 40 Turning Center and optimize the cost of machining in terms of tool cost and energy consumption while maintaining part quality at a productive cycle time. Studying the relationship between energy consumption, tool life, and cycle time with the speed and feed settings through statistical Analysis of Variance (ANOVA) method will allow the production plant to make profitable financial decisions concerning simultaneous turning operation of forged chrome-alloy steel. The project was divided into three phases; the first phase began with a literature survey of sensors used in current manufacturing research and the adaptation of our sensors to the Okuma LC 40 turning center. Then, phase II used design of experiments to identify spindle speed and feedrate settings that optimize multiple responses related to the turning process. The result was a saving in energy consumption (kWh) by 11.8%, a saving in cutting time by 13.2% for a total cost reduction from $1.15 per tool pass to $1.075 per tool pass. Furthermore, this work provides the foundation for phase III to develop an intelligent monitoring system to provide real-time information about the state of the machine and tool. For a monitoring system to be implemented in production, it should utilize cost effective sensors and be nonintrusive to the cutting operation
158

An Application of Anti-Optimization in the Process of Validating Aerodynamic Codes

Cruz, Juan Ramón 21 April 2003 (has links)
An investigation was conducted to assess the usefulness of anti-optimization in the process of validating of aerodynamic codes. Anti-optimization is defined here as the intentional search for regions where the computational and experimental results disagree. Maximizing such disagreements can be a useful tool in uncovering errors and/or weaknesses in both analyses and experiments. The codes chosen for this investigation were an airfoil code and a lifting line code used together as an analysis to predict three-dimensional wing aerodynamic coefficients. The parameter of interest was the maximum lift coefficient of the three-dimensional wing, CL max. The test domain encompassed Mach numbers from 0.3 to 0.8, and Reynolds numbers from 25,000 to 250,000. A simple rectangular wing was designed for the experiment. A wind tunnel model of this wing was built and tested in the NASA Langley Transonic Dynamics Tunnel. Selection of the test conditions (i.e., Mach and Reynolds numbers) were made by applying the techniques of response surface methodology and considerations involving the predicted experimental uncertainty. The test was planned and executed in two phases. In the first phase runs were conducted at the pre-planned test conditions. Based on these results additional runs were conducted in areas where significant differences in CL max were observed between the computational results and the experiment — in essence applying the concept of anti-optimization. These additional runs were used to verify the differences in CL max and assess the extent of the region where these differences occurred. The results of the experiment showed that the analysis was capable of predicting CL max to within 0.05 over most of the test domain. The application of anti-optimization succeeded in identifying a region where the computational and experimental values of CL max differed by more than 0.05, demonstrating the usefulness of anti-optimization in process of validating aerodynamic codes. This region was centered at a Mach number of 0.55 and a Reynolds number of 34,000. Including considerations of the uncertainties in the computational and experimental results confirmed that the disagreement was real and not an artifact of the uncertainties. / Ph. D.
159

Application of Multidisciplinary Design Optimisation Frameworks for Engine Mapping and Calibration

Kianifar, Mohammed R. January 2014 (has links)
With ever-increasing numbers of engine actuators to calibrate within increasingly stringent emissions legislation, the engine mapping and calibration task of identifying optimal actuator settings is much more difficult. The aim of this research is to evaluate the feasibility and effectiveness of the Multidisciplinary Design Optimisation (MDO) frameworks to optimise the multi-attribute steady state engine calibration optimisation problems. Accordingly, this research is concentrated on two aspects of the steady state engine calibration optimisation: 1) development of a sequential Design of Experiment (DoE) strategy to enhance the steady state engine mapping process, and 2) application of different MDO architectures to optimally calibrate the complex engine applications. The validation of this research is based on two case studies, the mapping and calibration optimisation of a JLR AJ133 Jaguar GDI engine; and calibration optimisation of an EU6 Jaguar passenger car diesel engine. These case studies illustrated that: -The proposed sequential DoE strategy offers a coherent framework for the engine mapping process including Screening, Model Building, and Model Validation sequences. Applying the DoE strategy for the GDI engine case study, the number of required engine test points was reduced by 30 – 50 %. - The MDO optimisation frameworks offer an effective approach for the steady state engine calibration, delivering a considerable fuel economy benefits. For instance, the MDO/ATC calibration solution reduced the fuel consumption over NEDC drive cycle for the GDI engine case study (i.e. with single injection strategy) by 7.11%, and for the diesel engine case study by 2.5%, compared to the benchmark solutions. / UK Technology Strategy Board (TSB)
160

Experimentell studie av driftparametrar och deras inverkan på förbränningen hos en avfallseldad rosterpanna / Experimental study of operating parameters and their effect on the combustion of a waste-fired grate boiler

Nordström, Christoffer January 2021 (has links)
Energiåtervinning av avfall genom förbränning är en av de dominerande metoderna i Sverige för att reducera mängden avfall. I Sverige förbränns cirka 6 miljoner ton avfall årligen och detta genererade år 2019 16 TWh värme och 2 TWh elektricitet. Värmevärdens värmeverk Källhagsverket i Avesta producerade 185 000 MWh fjärrvärme från avfallsförbränning via deras avfallseldade rosterpanna 2019. Källhagsverket har under de senaste säsongerna haft problem med mängden kolmonoxid (CO) som bildats från avfallsförbränningen, då de har haft överträdelser av dygnsmedelvärdet av kolmonoxid. Projektets syfte var att undersöka hur en stabil förbränning kan uppnås genom att undersöka bidragande orsaker till ofullständig förbränning och projektets mål var att reducera mängden kolmonoxid som bildas från avfallsförbränningen. Vid projektets början bedrevs en litteraturstudie för att skapa bättre förståelse för förbränning och avfallsförbränning i rosterpannor. Resultatet från denna litteraturstudie visade att de faktorer som kunde bidra till höga mängder bildad kolmonoxid var bland annat rosterpannans bränslebädd, luftfördelningen i pannan och pannans tillförda luftmängd. Metoden som applicerades för projektet utgick från arbetssättet för försöksplanering. Försöksplaneringsmetodiken kan sammanfattningsvis beskrivas som ett samlingsbegrepp för ett arbetssätt för metoder som möjliggör att ta fram slutsatser och samband hos en process olika faktorer. Källhagsverkets rosterpanna undersöktes och driftdata från tidigare driftsäsonger analyserades med hjälp av statistiska analyser i form av enkel linjär regressionsanalys och multipel linjär regressionsanalys. Resultatet från de statistiska analyserna visade att luftfaktorer såsom luftflöden och luftfördelning hade signifikans för mängden bildad kolmonoxid av pannan. Flertalet olika försök genomfördes för att identifiera faktorer som påverkade förbränningen, bildningen av kolmonoxid och pannans begränsningar. Försöken utfördes bland annat för att testa olika luftfördelningar hos pannan, ändra mängden tillförd torkluft och rosterhastighetsfördelningar. Efter dessa initiala försök bedrevs två större försök, ett 2-faktorförsök och ett försök där pannans sekundärluft fick reglera på syrehalten i stället för kolmonoxidmängden i rökgaserna. 2-faktorförsöket genomfördes där tre faktorer ändrades från en låg nivå till en hög nivå. Faktorerna var syrehalten i rökgaserna, sekundärluftsfördelningen mellan övre och nedre sekundärluftsregistret och sekundärluftsregleringen mellan främre och bakresekundärluftsregistret. Resultatet från de genomförda försöken visade att de signifikanta faktorerna för den bildade kolmonoxiden var syrehalten i rökgaserna, sekundärluftsfördelningen och primärluftsmängden hos torkzonen (roster 1) och förbränningszonen (roster 3). Resultatet visade även att kolmonoxidmängden och mängden kväveoxid kunde reduceras om sekundärluftsregleringen reglerade på syrehalten i rökgaserna i stället för kolmonoxiden. När sekundärluften reglerade på syrehalten reducerades mängden kolmonoxid med cirka 30 % och mängden kväveoxid reducerades med cirka 15 %. Det som gav mest effekt under projektet var att låta sekundärluften reglera på syrehalten (O2) i stället för kolmonoxiden (CO). Detta gav en kolmonoxid-minskning med cirka 30 % och reducerade även kväveoxid-utsläppen (NOx) med 15 %. Följande rekommendationer gavs för att reducera mängden bildad kolmonoxid: sekundärluftsreglering bör ske via syrehalten för att reducera mängden kolmonoxid och kväveoxid. minska luftöverskottet till nivåer med syrehalt på cirka 5,5 % – 6,0 %. Nyckelord: avfallsförbränning, rosterpanna, försöksplanering. / Energy recovery of waste via waste incineration is one of the dominant methods in Sweden for reducing the amount of waste. In Sweden, approximately 6 million tonnes of waste are incinerated annually and in 2019 this generated 16 TWh of heat and 2 TWh of electricity. Värmevärden’s heating plant Källhagsverket in Avesta produced 185 000 MWh of district heating by waste incineration from their waste-fired grate boiler in 2019. In recent seasons, Källhagsverket has had problems with the amount of carbon monoxide (CO) formed from waste incineration, as they have violated the daily average value of carbon monoxide. The aim of the project was to investigate how a stable combustion can be achieved by investigating contributing causes of incomplete combustion and the project’s goal was to reduce the amount of carbon monoxide formed from the waste incineration. At the beginning of the project, a literature study was conducted to create a better understanding of combustion and waste combustion in grate boilers. The results from this literature study showed that the factors that can contribute to high amounts of carbon monoxide were, among other things, the fuel bed of the boiler, the air distribution in the boiler and the amount of air supplied to the boiler. The method applied to the project was based on the experimental design approach. The experimental planning methodology can in summary be described as a collective concept for a way of working regarding methods that makes it possible to draw conclusions and relationships between different factors in a process. Källhagsverket’s grate boiler was examined and operating data from previous operating seasons were analysed using statistical analyses in the form of simple linear regression analysis and multiple linear regression analysis. The results of the statistical analyses showed that air factors such as air flows and air distribution was significant for the amount of carbon monoxide formed in the boiler. Several different experiments were performed to identify factors that affected the combustion, the formation of carbon monoxide and the limitations of the boiler. Attempts included testing different air distributions at the boiler, changing the amount of drying air supplied and grate speed distributions. After these initial experiments, two larger experiments were conducted, a 2-factor experiment and an experiment where the boiler’s oxygen content operated as a the setpoint for the secondary air instead of the amount of carbon monoxide in the flue gases. The 2-factor experiment was carried out where three factors were changed from a low level to a high level and these factors were the oxygen content in the flue gases, the secondary air distribution between the upper and lower secondary air register and the secondary air distribution between the front and rear secondary air register. The results from the experiments showed that the significant factors for the carbon monoxide formed were the oxygen content in the flue gases, the secondary air distribution and the primary air flow of grate 1 and grate 3. The results also showed that the carbon monoxide content and the amount of nitric oxide could be reduced. When oxygen content operated as the setpoint for the secondary air the amount of carbon monoxide was reduced by about 30 % and the amount of nitric oxide was reduced by about 15 %. What resulted in the best results during the project was to let the oxygen content (O2) operate as the setpoint for the secondary air instead of carbon monoxide (CO). This resulted in a carbon monoxide reduction of about 30 % and also reduced nitric oxide (NOx) emissions by 15 %. The following recommendations that were given to reduce the amount of carbon monoxide formed: secondary air control should be done via the oxygen content to reduce the amount of carbon monoxide and nitric oxide. reduce the excess air to levels with an oxygen content of about 5.5 %. Keywords: waste combustion, grate boiler, design of experiments.

Page generated in 0.1182 seconds