Spelling suggestions: "subject:"destilação por membrana"" "subject:"desetilação por membrana""
1 |
Cristalização assistida por destilação por membranas aplicada ao reuso de água: comparação com outros métodos de reuso, análise do processo e projeto hierárquico de processo. / Membrane distilation crystalization applied to water reuse: comparison with other reuse methods, process analysis and hierarchical design procedure.Pantoja, Carlos Eduardo 29 October 2015 (has links)
No presente trabalho foram avaliados processos alternativos de dessalinização visando a recuperação e reuso da água contida em salmouras concentradas, sendo o processo de cristalização assistida por destilação por membranas (MDC) investigado com profundidade. Foi desenvolvido um modelo diferencial para o processo de destilação por membranas por contato direto (DCMD), contemplando métodos termodinâmicos rigorosos para sistemas aquosos de eletrólitos fortes, bem como mecanismos de transferência de calor e massa e efeitos de polarização de temperatura e concentração característicos deste processo de separação. Com base em simulações realizadas a partir do modelo matemático assim desenvolvido, foram investigados os principais parâmetros que influenciam o projeto de um módulo de membranas para DCMD. O modelo foi posteriormente estendido com equações de balanço de massa e energia adicionais para incluir a operação de cristalização e desta forma representar o processo de MDC. De posse dos resultados das simulações e do modelo estendido, foi desenvolvido um método hierárquico para o projeto de processos de MDC, com o objetivo de conferir características de rastreabilidade e repetibilidade a esta atividade. Ainda a partir do modelo MDC foram discutidos aspectos importantes em MDC como a possibilidade de nucleação e crescimento de cristais sobre a superfície das membranas, bem como o comportamento do processo com sais com diferentes características de solubilidade e largura da zona metaestável. Verificou-se que para sais cuja solubilidade varia muito pouco com a temperatura e que possuem zona metaestável com pequena largura, caso do NaCl, a operação com resfriamento no cristalizador não é viável pois aumenta excessivamente o consumo energético do processo, sendo nesses casos preferível a operação \"isotérmica\" - sem resfriamento no cristalizador - e o convívio com a possibilidade de nucleação no interior do módulo. No extremo oposto, observou-se que para sais com grande variabilidade da solubilidade com a temperatura, um pequeno resfriamento no cristalizador é suficiente para garantir condições de subsaturação no interior do módulo, sem grande ônus energético para o processo. No caso de sais com pequena variabilidade da solubilidade com a temperatura, mas com largura da zona metaestável elevada, existe certo ônus energético para a operação com resfriamento do cristalizador, porém não tão acentuado como no caso de sais com zona metaestável estreita. Foi proposto um fluxograma alternativo para o processo de MDC, onde foi introduzido um circuito de pré-concentração da alimentação antes do circuito de cristalização, para o caso de alimentação com soluções muito diluídas. Este esquema proporcionou um aumento do fluxo permeado global do processo e consequentemente uma redução na área total de membrana requerida. Verificou-se que através do processo com préconcentração da alimentação de 5% até 10% em massa - no caso de dessalinização de uma solução de NaCl - foi possível reduzir-se a área total da membrana em 27,1% e o consumo energético específico do processo em 10,6%, quando comparado ao processo sem pré-concentração. Foram desenvolvidas ferramentas úteis para o projeto de processos de dessalinização por MDC em escala industrial. / Alternative desalination processes aiming at the recovery and reuse of the water contained in concentrated brines were evaluated, being the membrane distillation crystallization (MDC) process investigated in depth. A differential model for the direct contact membrane distillation (DCMD) process was developed for that matter, comprising rigorous thermodynamic methods for strong electrolytes, heat and mass transfer mechanisms and temperature and concentration polarization effects. Based on simulations from the mathematical model thus developed, the main parameters that influence the design of DCMD membrane modules were investigated. The model was further extended with mass and energy balance equations in order to consider the crystallization unit operation and thus suitably represent the MDC process. Based on the simulations results and the extended model, a hierarchical method was developed for the MDC process design, adding traceability and repeatability characteristics to the design activity. Important aspects of the MDC process such as the possibility of nucleation and crystal growth on the membrane surface, as well as the behavior of the process with salts presenting different solubility characteristics and metastable zone widths were further discussed. It was observed that salts presenting negligible temperature dependence regarding their solubility and small metastable zone widths (i.e. NaCl) do not favor the operation with cooling in the crystallizer due to excessive increase in energy consumption, being the isothermal operation more indicated in such cases even at the risk of nucleation inside the membrane module. On the other hand, it was noticed that for salts whose solubility is highly temperature dependent a slight cooling in the crystallizer is enough to assure subsaturated conditions inside the membrane module with minimal energy consumption increase. In the case of salts with low temperature dependence regarding solubility but with large metastable zone widths, the operating strategy of applying cooling in the crystallizer may increase energy consumption but not as significantly as in the case of salts with small metastable zone widths. An alternative flowsheet for the MDC process was proposed, where a pre-concentration loop was introduced before the crystallization loop, showing good results for dilute feeds since it takes advantage of the higher water activity and consequently higher transmembrane fluxes due to the lower concentration. It was perceived a 27.1% reduction in the required membrane surface and a 10.6% energy consumption reduction for the modified flowsheet with the pre-concentration loop, for a feed comprised of 5% of NaCl. Useful tools aimed for the design of industrial scale processes based on MDC were developed.
|
2 |
Cristalização assistida por destilação por membranas aplicada ao reuso de água: comparação com outros métodos de reuso, análise do processo e projeto hierárquico de processo. / Membrane distilation crystalization applied to water reuse: comparison with other reuse methods, process analysis and hierarchical design procedure.Carlos Eduardo Pantoja 29 October 2015 (has links)
No presente trabalho foram avaliados processos alternativos de dessalinização visando a recuperação e reuso da água contida em salmouras concentradas, sendo o processo de cristalização assistida por destilação por membranas (MDC) investigado com profundidade. Foi desenvolvido um modelo diferencial para o processo de destilação por membranas por contato direto (DCMD), contemplando métodos termodinâmicos rigorosos para sistemas aquosos de eletrólitos fortes, bem como mecanismos de transferência de calor e massa e efeitos de polarização de temperatura e concentração característicos deste processo de separação. Com base em simulações realizadas a partir do modelo matemático assim desenvolvido, foram investigados os principais parâmetros que influenciam o projeto de um módulo de membranas para DCMD. O modelo foi posteriormente estendido com equações de balanço de massa e energia adicionais para incluir a operação de cristalização e desta forma representar o processo de MDC. De posse dos resultados das simulações e do modelo estendido, foi desenvolvido um método hierárquico para o projeto de processos de MDC, com o objetivo de conferir características de rastreabilidade e repetibilidade a esta atividade. Ainda a partir do modelo MDC foram discutidos aspectos importantes em MDC como a possibilidade de nucleação e crescimento de cristais sobre a superfície das membranas, bem como o comportamento do processo com sais com diferentes características de solubilidade e largura da zona metaestável. Verificou-se que para sais cuja solubilidade varia muito pouco com a temperatura e que possuem zona metaestável com pequena largura, caso do NaCl, a operação com resfriamento no cristalizador não é viável pois aumenta excessivamente o consumo energético do processo, sendo nesses casos preferível a operação \"isotérmica\" - sem resfriamento no cristalizador - e o convívio com a possibilidade de nucleação no interior do módulo. No extremo oposto, observou-se que para sais com grande variabilidade da solubilidade com a temperatura, um pequeno resfriamento no cristalizador é suficiente para garantir condições de subsaturação no interior do módulo, sem grande ônus energético para o processo. No caso de sais com pequena variabilidade da solubilidade com a temperatura, mas com largura da zona metaestável elevada, existe certo ônus energético para a operação com resfriamento do cristalizador, porém não tão acentuado como no caso de sais com zona metaestável estreita. Foi proposto um fluxograma alternativo para o processo de MDC, onde foi introduzido um circuito de pré-concentração da alimentação antes do circuito de cristalização, para o caso de alimentação com soluções muito diluídas. Este esquema proporcionou um aumento do fluxo permeado global do processo e consequentemente uma redução na área total de membrana requerida. Verificou-se que através do processo com préconcentração da alimentação de 5% até 10% em massa - no caso de dessalinização de uma solução de NaCl - foi possível reduzir-se a área total da membrana em 27,1% e o consumo energético específico do processo em 10,6%, quando comparado ao processo sem pré-concentração. Foram desenvolvidas ferramentas úteis para o projeto de processos de dessalinização por MDC em escala industrial. / Alternative desalination processes aiming at the recovery and reuse of the water contained in concentrated brines were evaluated, being the membrane distillation crystallization (MDC) process investigated in depth. A differential model for the direct contact membrane distillation (DCMD) process was developed for that matter, comprising rigorous thermodynamic methods for strong electrolytes, heat and mass transfer mechanisms and temperature and concentration polarization effects. Based on simulations from the mathematical model thus developed, the main parameters that influence the design of DCMD membrane modules were investigated. The model was further extended with mass and energy balance equations in order to consider the crystallization unit operation and thus suitably represent the MDC process. Based on the simulations results and the extended model, a hierarchical method was developed for the MDC process design, adding traceability and repeatability characteristics to the design activity. Important aspects of the MDC process such as the possibility of nucleation and crystal growth on the membrane surface, as well as the behavior of the process with salts presenting different solubility characteristics and metastable zone widths were further discussed. It was observed that salts presenting negligible temperature dependence regarding their solubility and small metastable zone widths (i.e. NaCl) do not favor the operation with cooling in the crystallizer due to excessive increase in energy consumption, being the isothermal operation more indicated in such cases even at the risk of nucleation inside the membrane module. On the other hand, it was noticed that for salts whose solubility is highly temperature dependent a slight cooling in the crystallizer is enough to assure subsaturated conditions inside the membrane module with minimal energy consumption increase. In the case of salts with low temperature dependence regarding solubility but with large metastable zone widths, the operating strategy of applying cooling in the crystallizer may increase energy consumption but not as significantly as in the case of salts with small metastable zone widths. An alternative flowsheet for the MDC process was proposed, where a pre-concentration loop was introduced before the crystallization loop, showing good results for dilute feeds since it takes advantage of the higher water activity and consequently higher transmembrane fluxes due to the lower concentration. It was perceived a 27.1% reduction in the required membrane surface and a 10.6% energy consumption reduction for the modified flowsheet with the pre-concentration loop, for a feed comprised of 5% of NaCl. Useful tools aimed for the design of industrial scale processes based on MDC were developed.
|
Page generated in 0.0902 seconds