• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 957
  • 219
  • 123
  • 83
  • 25
  • 22
  • 16
  • 12
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 2020
  • 327
  • 270
  • 206
  • 204
  • 192
  • 182
  • 158
  • 158
  • 128
  • 127
  • 120
  • 108
  • 104
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Spectral tunable organic near-infrared photodetectors

Lan, Zhaojue 24 August 2020 (has links)
Filter-free spectral tunable photodetectors (PDs) are critical for a plethora of applications in imaging, indoor light fidelity (Li-Fi), and light communications. The present band-selective light detection is realized by incorporating different optical filters with broadband inorganic semiconductor-based PDs. However, the use of the optical filters reduces the overall performance of these PDs and is not appliable in the emerging flexible and wearable applications. The rapid advancement of the organic semiconductors offers an exciting opportunity for the development of high-performance filter-free spectral tunable organic photodetectors (OPDs). The development of OPDs has attracted tremendous interests because of the tailored optoelectronic properties of the π-conjugated organic semiconductors and the solution fabrication process of the OPDs. Apart from the rapid progresses made in improving the responsivity and detectivity of OPDs, the spectral properties of OPDs also receive intense attention. This Ph.D. research work has been focused on developing a universal strategy to achieve high-performance filter-free band-selective and spectral tunable OPDs. The correlation between the optical profile and responsivity spectrum of the novel OPDs with a bilayer photoactive layer has been investigated. It suggests that the responsivity spectrum of the OPDs can be effectively modulated by managing the optical profile in the bilayer and multilayer photoactive layer. A filter-free band-selective OPD model, comprising a bilayer shorter-wavelength light depletion layer/longer-wavelength light-absorbing layer architecture photoactive layer, has been developed. The depletion layer in the filter-free OPDs has a dual-function serving as a shorter-wavelength light-absorbing layer and a hole-transporting layer. The photodetection spectrum window of the filter-free band-selective OPDs, defined by the difference in wavelengths between the transmission cutoff of the shorter-wavelength light depletion layer and the absorption edge of the longer-wavelength light-absorbing layer, can then be tuned over the different wavelength ranges by using an appropriate combination of the shorter-wavelength light depletion layer and the longer-wavelength light-absorbing layer. A dual-mode OPD, having a trilayer visible light absorber/optical spacer/near-infrared (NIR) light absorber configuration photoactive layer, has been proposed. The dual-mode OPD exhibits electrically switchable NIR response operated under a reverse bias and visible light response operated under a forward bias. In the presence of NIR light, the trap-assisted charge-injection behavior at the organic/cathode interface in the OPDs operated under a reverse bias. The photocurrent is produced in the visible light-absorbing layer, enabled by the trap-assisted charge injection at the anode/organic interface under a forward bias. The developed filter-free band-selective OPDs and electrically switchable dual-mode OPDs provided an attractive alternative optical detection technology to the conventional panchromatic and single-mode OPDs. The spectral tunable photodetection thus demonstrated offers a promising option for new OPD applications.
212

Spectral tunable organic near-infrared photodetectors

Lan, Zhaojue 24 August 2020 (has links)
Filter-free spectral tunable photodetectors (PDs) are critical for a plethora of applications in imaging, indoor light fidelity (Li-Fi), and light communications. The present band-selective light detection is realized by incorporating different optical filters with broadband inorganic semiconductor-based PDs. However, the use of the optical filters reduces the overall performance of these PDs and is not appliable in the emerging flexible and wearable applications. The rapid advancement of the organic semiconductors offers an exciting opportunity for the development of high-performance filter-free spectral tunable organic photodetectors (OPDs). The development of OPDs has attracted tremendous interests because of the tailored optoelectronic properties of the π-conjugated organic semiconductors and the solution fabrication process of the OPDs. Apart from the rapid progresses made in improving the responsivity and detectivity of OPDs, the spectral properties of OPDs also receive intense attention. This Ph.D. research work has been focused on developing a universal strategy to achieve high-performance filter-free band-selective and spectral tunable OPDs. The correlation between the optical profile and responsivity spectrum of the novel OPDs with a bilayer photoactive layer has been investigated. It suggests that the responsivity spectrum of the OPDs can be effectively modulated by managing the optical profile in the bilayer and multilayer photoactive layer. A filter-free band-selective OPD model, comprising a bilayer shorter-wavelength light depletion layer/longer-wavelength light-absorbing layer architecture photoactive layer, has been developed. The depletion layer in the filter-free OPDs has a dual-function serving as a shorter-wavelength light-absorbing layer and a hole-transporting layer. The photodetection spectrum window of the filter-free band-selective OPDs, defined by the difference in wavelengths between the transmission cutoff of the shorter-wavelength light depletion layer and the absorption edge of the longer-wavelength light-absorbing layer, can then be tuned over the different wavelength ranges by using an appropriate combination of the shorter-wavelength light depletion layer and the longer-wavelength light-absorbing layer. A dual-mode OPD, having a trilayer visible light absorber/optical spacer/near-infrared (NIR) light absorber configuration photoactive layer, has been proposed. The dual-mode OPD exhibits electrically switchable NIR response operated under a reverse bias and visible light response operated under a forward bias. In the presence of NIR light, the trap-assisted charge-injection behavior at the organic/cathode interface in the OPDs operated under a reverse bias. The photocurrent is produced in the visible light-absorbing layer, enabled by the trap-assisted charge injection at the anode/organic interface under a forward bias. The developed filter-free band-selective OPDs and electrically switchable dual-mode OPDs provided an attractive alternative optical detection technology to the conventional panchromatic and single-mode OPDs. The spectral tunable photodetection thus demonstrated offers a promising option for new OPD applications.
213

Infrared sensor placement optimization and monitoring in thermoforming ovens

Hao, Yuan, 1982- January 2008 (has links)
No description available.
214

Gamow-Teller strength distributions for solar neutrino detectors via the (p,n) reaction /

Krofcheck, David January 1987 (has links)
No description available.
215

A Synchronous Phase Detection System for an Optical Interferometric Sensor

Bush, Ira J. 01 October 1981 (has links) (PDF)
A system has been developed to accurately detect phase produced in optical interferometric sensors. The system employs optical heterodyning and synchronously detects optical phase by feeding back an error signal to a phase modulator in the reference leg of the interferometer. This system is seen to have properties similar to a phase-locked loop used for the demodulation of FM signals. The system is modeled and found to be of second order and nonlinear. A linear approximation to the original model serves to accurately describe the system in synchronous operation and is corroborated with well matched empirical data. The nonlinear model is simulated via computer techniques and is used to describe the system's parameters that lead to loss and reacquisition of synchronization.
216

A sensor for continuously monitoring the batch annealing of cold worked steel strip /

Durham, Simon J. P. January 1984 (has links)
No description available.
217

Determination of Halogens in Organic Compounds by Using Sodium Fusion-Ion Chromatography Method

Wang, Chung-Yu 08 1900 (has links)
A sodium fusion-Ion chromatographic method for determination of fluorine, chlorine, bromine, and iodine in organic compounds is described. Seventeen organic halogen compounds and eleven mixtures were decomposed by Na fumes at 280-290°C for one hour or longer. The absorbing solutions were injected for ion chromatographic analysis using electrochemical and conductometric detectors. The arrangement of the apparatus includes the placement of the electrochemical and conductometric detectors. This method provides a mechanism providing for complete analysis for all four halogens in one ion chromatographic sample injection. Reproducibility is excellent and liquid sample handling is mentioned.
218

Investigation of charge collection in a CdTe-Timepix detector

Krapohl, David, Fröjdh, Christer, Fröjdh, Erik, Maneuski, D, Nilsson, Hans-Erik January 2013 (has links)
Energy calibration of CdTe detectors is usually done using known reference sources disregarding the exact amount of charge that is collected in the pixels. However, to compare detector and detector model the quantity of charge collected is needed. We characterize the charge collection in a CdTe detector comparing test pulses, measured data and an improved TCAD simulation model [1]. The 1 mm thick detector is bump-bonded to a TIMEPIX chip and operating in Time-over-Threshold (ToT) mode. The resistivity in the simulation was adjusted to match the detector properties setting a deep intrinsic donor level [2]. This way it is possible to adjust properties like trap concentration, electron/hole lifetime and mobility in the simulation characterizing the detector close to measured data cite [3].
219

Learning and applying material-based sensing lessons from nature

McConney, Michael Edward. January 2009 (has links)
Thesis (Ph.D)--Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Tsukruk, Vladimir; Committee Member: Shofner, Meisha; Committee Member: Srinivasarao, Mohan; Committee Member: Thio, Yonathan; Committee Member: Weissburg, Marc. Part of the SMARTech Electronic Thesis and Dissertation Collection.
220

Fabrication of long-period fiber gratings by CO₂ laser irradiation for high temperature applications

Wei, Tao, January 2008 (has links) (PDF)
Thesis (M.S.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed March 31, 2008) Includes bibliographical references (p. 33-36).

Page generated in 0.0407 seconds