• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Soil Micronutrient Variation Along an Elevational Gradient in a Wet Montane Forest

Ritzenthaler, Cari 26 July 2017 (has links)
No description available.
2

Conséquences de l'assemblage des communautés végétales sur la décomposition de leur litière / Consequences of plant-community assembly on litter decomposition

Barbe, Lou 08 December 2017 (has links)
Au cours de son assemblage, une communauté végétale va subir de nombreux changements : immigration de nouvelles espèces de plantes possédant de nouveaux traits, disparition de certaines espèces de plantes avec d’autres traits, immigration de nouveaux organismes associés aux plantes (insectes, champignons…), changements de traits chez les espèces présentes… Tous ces changements sont susceptibles de modifier la décomposition de la litière produite par la communauté végétale. En effet, la décomposition de la litière est gouvernée par les traits des espèces végétales, par l’activité des organismes décomposeurs, et par le degré d’adaptation de ces organismes aux traits des espèces végétales. Cependant, les conséquences de l’assemblage de la communauté végétale pour la décomposition de la litière demeurent inconnues. L’objectif de cette thèse est de déterminer les conséquences de l’assemblage des communautés végétales prairiales sur la décomposition de leur litière, et ce à différentes échelles. Tout d’abord, nous avons étudié, très localement, les conséquences des plantes voisines que possèdent un individu pour la décomposition de sa litière (i.e. échelle intraspécifique). Nous avons distingué le cas où la litière de l’individu était seule, du cas où sa litière était mélangée à de la litière provenant d’autres espèces végétales. Puis, nous avons étudié les conséquences de l’assemblage sur la décomposition de la litière au niveau plus global de l’ensemble de la communauté végétale (i.e. échelle interspécifique). Enfin, nous avons exploré la rétroaction de la décomposition sur l’assemblage de la communauté. Deux grandes démarches expérimentales ont été développées, la première utilisant un dispositif de mésocosmes permettant de manipuler le voisinage local des individus, la seconde utilisant un dispositif Long Term Ecological Research (LTER) impliquant un vaste réseau de prairies avec différentes durées d’assemblage. À l’échelle locale, nos résultats indiquent qu’un individu qui possède des plantes voisines fonctionnellement dissemblables produit une litière plus décomposable et peut également abriter des décomposeurs plus efficaces. Lorsque la litière de cet individu est mélangée avec de la litière d’autres espèces, la décomposition du mélange est accélérée par des effets synergiques lorsque les plantes voisines sont évolutivement dissemblables et fonctionnellement éloignées du mélange. À l’échelle globale de l’ensemble de la communauté, nos résultats indiquent que tout au long de l’assemblage, de nombreux changements de traits fonctionnels des espèces végétales ont lieu (ratio C:N foliaire, teneur en matière sèche des feuilles, etc.) ainsi que des changements dans la composition de la communauté de décomposeurs (ratio C:N microbien). Ces changements impactent fortement la décomposition de la litière de la communauté prairiale mais s’annulent, maintenant le même taux global de décomposition. Enfin, nos résultats indiquent que plus la litière de couples d’espèces se décompose vite, notamment via des effets synergiques, plus ces espèces coexistent entre elles. Cette thèse met en évidence l’influence majeure de l’assemblage des communautés végétales prairiales sur la décomposition de leur litière, de l’invidu jusqu’à la communauté végétale toute entière. L’assemblage des communautés végétales peut donc influencer les processus écosystémiques d’après-vie tels que la décomposition de la litière. Cette influence se produit via les traits des plantes et l’activité de leurs décomposeurs. En retour, la décomposition de la litière impacte l’assemblage de la communauté végétale. La décomposition de la litière ne semble donc pas une conséquence collatérale des traits des espèces végétales, mais bien un élément important de leur stratégie écologique et de leurs interactions biotiques, situé au coeur d'une boucle de rétroaction avec les processus d'assemblage des communautés. / During its assembly, a plant community will be strongly modified: immigration of new plant species with new traits, disappearance of particular species with other traits, immigration of new plant-associated organisms (insects, fungi…), trait changes in existing species… All these changes are likely to drive the decomposition of litter produced by the plant community. Litter decomposition is indeed controlled by plant traits, activity of decomposer community, and adaptation of decomposer organisms to plant traits. However, the consequences of plant-community assembly on plant litter decomposition remain entirely unknown. This thesis aims at determining the consequences of plant-community assembly on plant litter decomposition, at distinct scales. First of all, we studied, locally, the consequences of neighboring plants on litter decomposition of plant individuals (i.e. intraspecific scale). We distinguished the case where litter of plant individuals was alone from the case where litter of plant individuals was mixed with litter from other species. Then we studied, more globally, the consequences of plant-community assembly on decomposition at the scale of the entire plant community (i.e. interspecific scale). Finally, we investigated whether plant litter decomposition feedbacks on plant-community assembly. We used two experimental approaches, the first one using a long-term mesocosm experiment for manipulating the local plant neighborhood of plant individuals, and the second one using of Long Term Ecological Research network involving grasslands with different time for assembly. At the local scale, our results indicate that plant individuals grown in functionally dissimilar neighborhood produce a more decomposable litter, and can also harbor more efficient decomposers. When the litter of these individuals is mixed with litter from other species, the decomposition of the litter mixture is accelerated by synergistic effects when neighboring plants are phylogenetically diverse, and functionnally dissimilar to the litter mixture. At the scale of whole plant community, our results show that numerous trait changes occur during assembly (leaf C:N ratio, leaf dry matter content…), as well as changes in the composition of the decomposer community (soil microbial C:N ratio). These changes strongly affect litter decomposition but offset each other, maintaining litter decomposition constant. Finally, our result show that the faster the decomposition of mixed-litter from two species is, the more both species coexist. This thesis demonstrates the major influence of plant-community assembly on plant litter decomposition in grassland ecosystems, from the scale of plant individuals to the scale of entire plant community. Plant-community assembly hence affects after-life ecosystem processes like litter decomposition. This influence occurs through plant traits and decomposer activity. In turn, litter decomposition feedbacks on plant-community assembly. Consequently, litter decomposition does not seem to be a collateral consequence of plant traits, but rather an important part of their ecological strategies and biotic interactions, participating to a feedback loop involving community assembly processes.
3

The impact of selective beech (Nothofagus spp.) harvest on litter-dwelling invertebrates and the process of litter decomposition

Evans, Alison January 1999 (has links)
Minimising the potential impact of forest management requires an understanding of the key elements that maintain forest diversity and its role in ecological processes. Invertebrates are the most diverse of all biota and play important roles in maintaining forest processes. However, little is known about invertebrates in New Zealand's beech forests or the degree to which selective beech harvest might impact on their diversity and ability to carry out ecosystem processes. Studying ecosystem responses to disturbance is considered vital for understanding how ecosystems are maintained. One of the main objectives of this research was to assess whether litter-dwelling invertebrates were susceptible to the impacts of selective harvest and, if so, whether they could be used as indicators of forest health. Changes in invertebrate diversity could have important implications for nutrient cycling and primary production in forests. Litter-dwelling invertebrates contribute to the process of decomposition by increasing the surface area of the leaves, mixing soil organic matter and by infecting leaf particles with soil microbes. This investigation into the function of invertebrates in beech forest was carried out in the context of ecological theories which relate diversity to ecosystem stability and resilience. A replicated study was established in Maruia State Forest (South Island, New Zealand) to assess the potential biotic and abiotic impacts of sustainable beech harvest. Litter-dwelling invertebrates and environmental factors were monitored during 1997, before harvest, to determine how much variability there was between study sites. Specifically, litter pH, light intensity, litter fall, litter temperature, moisture as well as invertebrate abundance and diversity were compared before and after selective harvest. On 17 January 1998, two to three trees were selectively harvested from three of the nine study sites. On 15 February 1998 a similar number of trees were winched over or felled manually to create artificial windthrow sites. The remaining three undisturbed sites were used as controls. Invertebrates belonging to the detritivore guild were assessed from litter samples and a series of litter-bags containing pre-weighed leaf litter which were placed in each of the sites to assess rates of litter decomposition. Millipedes (Diplopoda: Polyzoniidae, Schedotrigonidae, Dalodesmidae, Habrodesmidae, Sphaerotheridae), earthworms (Oligochaeta: Annelida), tipulid larvae (Diptera: Tipulidae), weevils (Coleoptera: Curculionidae), moth larvae (Lepidoptera: Oecophoridae, Tortricidae and Psychidae), slaters (Isopoda: Styloniscidae), Oribatid mites (Acarina: Cryptostigmata) and landhoppers (Crustacea: Amphipoda) were extracted from the litter-bags and their abundance and diversity was compared between the three treatments. Weight loss from the litter-bags and the carbon and nitrogen content of litter were used to measure the rate of decomposition in each treatment. An additional study investigated whether exclusion of invertebrates from leaf litter resulted in reduced rates of decomposition. The results indicated that there was an increase in light intensity and a small increase in temperature following selective harvest and artificial windthrow. There was no significant difference in litter moisture or the amount of litter fall between the treatments. Invertebrate abundances were significantly affected by season but did not appear to be affected by selective harvest or artificial windthrow. The diversity of invertebrates remained relatively constant throughout the year, as did the rate of decomposition. When invertebrates were excluded from the leaf litter there was no consequential effect on the rate of litter decomposition. This suggests that there may be compensatory mechanisms taking place between the trophic levels of the food web to maintain processes and that direct links between invertebrates and decomposition are relatively weak. In conclusion, it appears that the effects of selective beech harvest on forest-floor processes were minimal and are comparable to those created by natural windthrow disturbance. It also appears that macroclimatic effects such as seasonal climatic effects have a large effect on forest biota. As none of the invertebrates studied appeared to be detrimentally affected by selective harvest and as there was no direct link demonstrated with decomposition, it was considered inappropriate to advocate the use of this group of invertebrates as indicators of sustainable forest management. The results from this study provide information which may help inform decisions on the future management of diversity in beech forest ecosystems.

Page generated in 0.0382 seconds