Spelling suggestions: "subject:"devevelopment length"" "subject:"agentdevelopment length""
1 |
Reinforcing Bar Splice Performance in Masonry with Self-Consolidating GroutRoper, Aaron Brent 01 April 2018 (has links)
The use of self-consolidating grout in reinforced masonry construction provides various advantages such as reduced labor, faster construction, decreased noise pollution and better structural response. This is a relatively new building material however, and little research on self-consolidating grout's structural properties has been conducted. The purpose of this study was to analyze the performance or bond capacity of steel reinforcing bar splices in masonry with self-consolidating grout. Twelve masonry panels approximately 40 in. wide and 32 in. tall consisting of Type S mortar and concrete masonry units grouted with self-consolidating grout and No. 5 steel reinforcing bars were constructed with splice lengths as prescribed by the current design equation and splices that were slightly shorter. Test Group 1 consisted of six reinforced masonry panels with the code required lap length while Test Groups 2 and 3 had splices two and four inches shorter, respectively. The lap-splices were tested in pure tension to determine if they would fully develop the code mandated stress of 125% of the specified yield strength of the reinforcing bars. More samples were tested with the code required development length to verify if the current provision is adequate for design and the other two groups were used to explore if the required capacity could be achieved with shorter splices. All lap-splices developed the minimum required stress, even those with splices shorter than required by the design equation. For masonry with self-consolidating grout containing No. 5 bars in the specific configurations tested, the current design equation was shown to be adequate for calculating development length. Testing indicates that a reduction in required splice length for masonry with self-consolidating grout is possible.
|
2 |
A Theoretical and Practical Analysis of the Effect of Drilling Fluid on Rebar Bond StrengthCostello, Kelly 08 November 2018 (has links)
Drilled shafts are large cylindrical cast-in-place concrete structural elements that can be favored due to cost-effectiveness. These elements however, require strict quality control during construction to ensure a stable excavation. Drilling fluid is often used in construction to attain this stability. Drilling fluid, or slurry, can be ground water or salt water, but is typically made from a mixture of water and mineral or polymer powder to form a viscous fluid slightly more dense than ground water. During concreting, the drilling fluid is displaced by the heavier concrete, which is tremie placed at the base of the excavation from the center of the reinforcement cage. While concrete used for drilled shafts should be highly fluid, it does not follow an ideal, uniform flow. The concrete rather builds up inside the reinforcement cage to a sufficient height before then pressing out radially into the annular cover region. This concrete flow pattern associated with drilled shafts has been shown to trap slurry around/near the steel reinforcement and affect reinforcement bond strength.
Presently there are no specifications relating to slurry effects on reinforcing bar bond strength from the American Concrete Institute (ACI) or the American Association of State and Highway Transportation Officials (AASHTO). This dissertation analyzes longitudinal reinforcing bar concrete bond strength data recorded from 268 specimens constructed with tremie-placed concreting conditions in varying drilling fluids. Reinforcement used for testing were No. 8 deformed rebar. Based on the results found from this analysis, this dissertation recommends the use of a slurry modification factor to current bond strength and development length specifications.
|
3 |
Development length equation for high-strength materialsKim, Najung, 1977- 24 July 2015 (has links)
The goal of this study was to revise the development length equation of ACI 318- 05 and to better reflect test results for high-strength concrete. The revision of the equation was accomplished using test results tabulated in the Database 10-2001maintained by ACI committee 408. Equations for development length in ACI 318-05 and ACI 408.3 examined to understand the issues to be considered for revision on the variability of test data. The development length equation in ACI 318-05 was very conservative for [compressive strength of concrete][less than or equal to]14,000 psi based on the experimental data in Database 10-2001 of ACI Committee 408. On the contrary, the ACI 318-05 may be less conservative for high-strength concrete, [compressive strength of concrete] [greater than or equal to]14,000 psi . Thus, modified design equations were proposed to provide realistic values for normal strength concrete and conservatively for high-strength concrete. The ACI 318-05 equation was modified for 1) compressive strength of concrete and 2) confinement as expressed by the term [minimum side cover, cover over the bar or wire, or one-half the center-to-center spacing of the bars or wires] + [contribution of confining reinforcement across potential splitting planes] / [normal diameter of bar] in ACI 318-05. The basic assumption is that bar stress is a linear function of development length, and development length is the length required for bar stresses to reach the yield. / text
|
4 |
TRIPPING OF THE BOUNDARY LAYER DEVELOPMENT LENGTH OVER ROUGH AND FULLY TURBULENT SUBCRITICAL FLUMESapkota, Deependra 01 December 2015 (has links)
The distance required for flow entering a laboratory channel to become fully-developed and uniform can be substantial. Given the need to establish fully-developed uniform flow, if the length of a laboratory channel is not substantial then it likely that the flume cannot be used to conduct open-channel flow research. In laboratory studies where the channel bed is hydraulically rough, the noted problem can be lessened by minimizing the length over which the flow becomes fully-developed and uniform (Lunif). For this study it is hypothesized that if bed material with a roughness height (ks, ∆) is placed at the channel entrance and ks, ∆ is greater has the roughness height of bed material placed throughout the channel (ks, bed) then Lunif can be reduced. The length over which the larger bed material is referred to as the tripping zone length (∆). A second hypothesis for this study is that if ∆ is longer, then Lunif will be shorter. The primary objective of this study is to test the above mentioned hypothesis and to develop a relationship for predicting Lunif as a function of Δ. For this study, physical tests were performed in a rectangular Plexiglas flume with a variable slope. The flume was 6.1 m long, 45.7 cm wide, and 45.7 cm deep. The channel has smooth walls and the bed was lined with gravel (median particle size, d50 = 8.5 mm or 22 mm). Similarly tripping zone was lined with gravel of larger size (median particle size, d50 = 13 mm or 58 mm).Twelve tests were conducted for the study. For each test, longitudinal point velocity measurements (u) were made along the channel center, at five elevations (z), and at twelve longitudinal stations (x). An Acoustic Doppler Velocimeter was used to measure u. Lunif was determined by considering four indications of flow uniformity. Results indicate that having a tripping zone decreases Lunif and the magnitude of the decrease in Lunif was dependent on ∆. A function is presented for predicting Lunif /H = f (Rep, Fr, and Δ/H) where Rep is the Reynold's particle number, Fr is the Froude number and H is the flow depth.
|
5 |
A Pilot Study to Determine the Performance of Tension Lap Splices in Reinforced Masonry Made with Light-Weight GroutCorbett, Brandon Richard 01 December 2015 (has links) (PDF)
The use of light-weight building materials in modern construction has resulted in efficient designs and considerable cost savings by reducing structural weight and supporting sections. This has only been possible because of many years of research to better understand the properties of the light-weight material, and its structural behaviors. However, light-weight grout is a relatively new building material in reinforced masonry construction and little is known about its structural properties. The main objective of this study was to determine if the use of light-weight grout would impact the performance of reinforcing steel, specifically development length, in masonry construction.The research included testing masonry wallettes made with normal and light-weight grout containing No. 4 (12 mm) bars with splice lengths as prescribed by the current design equation as well as splices with a modification factor. The modification factor was based on preliminary grout testing, using the procedure given in the concrete building code. The wallettes were tested in a tension test to determine if the splices were of sufficient length to fully develop the yield stress of the reinforcement.For small bar sizes, No. 4 or smaller, it is not necessary to include a modification factor when calculating development length. The minimum length of lap of 12 in. governs when No. 4 or smaller bars are used, and provides sufficient length to fully develop the yield stress of the reinforcement both for normal and light-weight grout types.
|
6 |
Top Strand Effect and Evaluation of Effective Prestress in Prestressed Concrete BeamsHodges, Hunter Thomas 02 February 2007 (has links)
The first objective of this thesis was to assess the effect of casting orientation on bond strength in pretensioned prestressed concrete members. The "top strand effect" was evaluated through transfer and development length tests of prestressed concrete beams. Eight beams were cast with normal orientation, while four beams were cast with inverted orientation so that a significant depth of fresh concrete was placed below prestressing strands. Discrete transfer lengths were determined at the ends of each beam by measuring concrete surface strains. Inverted casting orientation caused an average 70 percent increase in transfer length. Some transfer lengths in beams with inverted casting orientation exceed current ACI and AASHTO code provisions. All measured transfer lengths were less than 90 strand diameters (45 in. for 0.5 in. diameter strands). Ranges of development length were determined through iterative load testing. The top strand effect on development length was more qualitative than quantitative. Ranges of development length in normal beams were conservatively less than code provisions. Ranges of development length in beams with inverted casting orientation were much closer to and sometimes exceeded code provisions. It is recommended that ACI and AASHTO code provisions for the development length of prestressing strand be modified to include the same magnification factors that are specified for the development length of deformed bars with twelve or more inches of fresh concrete placed below.
The second objective of this thesis was to compare experimentally measured prestress losses to theoretical calculations. Theoretical prestress losses were calculated according to PCI and AASHTO Refined methods. These methods produced similar results. Prestress losses were experimentally measured by vibrating wire gages and flexural load testing. Vibrating wire gages were used to monitor internal concrete strains. Two methods were used to reduce vibrating wire gage data: an upper/lower bound method and a basic method. The upper/lower bound method produced distorted data that was unreasonable in some cases. The basic method was more reasonable, but resulted in some prestress loss measurements that were greater than theoretical predictions. Flexural load testing was used to back calculate prestress losses from crack initiation and crack reopening loads. Prestress losses measured by crack initiation loads were generally greater than theoretical values. Losses measured by crack reopening loads were distorted. The distortion was attributed to difficulty in isolation of the correct crack reopening load. Large measurements of prestress losses by the basic vibrating wire gage and crack initiation methods suggested that losses occurred between the time when concrete was poured and prestress transfer occurred. Such losses are not accounted for in current code provisions. More research is recommended to determine the magnitude of these additional losses and their effect on design. / Master of Science
|
7 |
Transfer Length, Development Length, Flexural Strength, and Prestress Loss Evaluation in Pretensioned Self-Consolidating Concrete MembersTrent, Justin David 04 June 2007 (has links)
The first objective of this thesis was to determine the effect of using self-consolidating concrete versus normal concrete on transfer and development lengths, and flexural strengths of prestressed members. Three small rectangular members were made, two cast with SCC mixes and one cast with a conventional mix, to determine the transfer length of each mix. Transfer lengths of both ends of each member were determined by measuring the concrete surface strains. The change in the transfer length was monitored by determining the transfer length of each member at prestress release, 7 days after release, and 28 days after release. All concrete mixes had lower than code determined transfer lengths at prestress release. Each concrete mix showed between a 12 to 56 percent increase in transfer length after 28 days. One SCC mix exceeded the ACI code stipulated 50 strand diameters 7 days after prestress transfer. The other SCC mix was consistently below the transfer length of the conventional concrete.
Separate development length members were cast in a stay-in-place steel form used for creating structural double tees. Each development length member was a stub tee. Iterative load testing was performed to determine the development length of each SCC and conventional mix. Development lengths for both SCC mixes were approximately 20 percent shorter than ACI and AASHTO code predictions. A development length for the conventional concrete was not determined due to non-repeating test data. The flexural strength of each member was determined during load testing. All concrete mixes achieved higher than the ACI predicted strengths.
The second objective of this thesis was to experimentally measure prestress losses and compare these experimental values to theoretical models. Crack initiation and crack reopening tests were performed to experimentally determine the prestress losses in each member. Three theoretical models were evaluated, the sixth edition PCI Design Handbook suggested model, a 1975 PCI Committee on Prestress Losses model, and the AASHTO LRFD prestress loss model. The crack initiation experimental values tended to be between 10 and 15 percent lower than theoretical models. In general, the crack reopening prediction of the effective prestress had a good correlation with theoretical models. This suggests crack reopening tests can be used as predictors of effective prestress, and as such, predictors of prestress losses in future experimental research. Additionally, the concrete type was shown to affect the prestress losses determined in the development length members. The SCC members tended to have higher effective prestress forces than the conventional concrete members, and thus had less prestress losses due to creep and shrinkage than the conventional concrete members. / Master of Science
|
8 |
Effect of concrete properties and prestressing steel indentation types on the development length and flexural capacity of pretensioned concrete membersMomeni, Amir Farid January 1900 (has links)
Doctor of Philosophy / Civil Engineering / Robert J. Peterman / A study was conducted to determine the effect of different concrete properties and prestressing steel indentation types on development length and flexural capacity of pretensioned members. Wires and strands commonly used in the manufacturing of prestressed concrete railroad ties worldwide were selected for the study. Thirteen different 5.32-mm-diameter prestressing wire types and six different strands (four, seven-wire strands and two, three-wire strands) were used to cast prisms with a square cross section. The ratio of concrete to prestressed steel in the test prism’s cross section was representable of typical concrete railroad ties. Thus, geometrical and mechanical properties of test prisms were representative of actual ties in the railroad industry.
To understand the effect of concrete-release strengths and slumps on development length, all parameters were kept constant in the prisms except concrete-release strength and slump. To manufacture prisms with different release strengths, all four wires/strands were pulled and detensioned gradually when the concrete compressive strength reached 3500 (24.13 MPa), 4500 (31.03 MPa), and 6000 (41.37 MPa) psi. To determine the effect of different slumps on development length, prisms with different slumps of 3 in. (7.6 cm), 6 in. (15.2 cm), and 9 in. (22.9 cm) were manufactured and all other parameters were kept constant in prisms. All prisms were tested in three-point bending at different spans to obtain estimations of development length based on type of reinforcement, concrete-release strength, and concrete slump. Lastly, a design equation was developed based on experimental data for prediction of development length.
In the last phase of load tests, cyclic-loading tests were conducted on the prisms manufactured with wires to evaluate the bond performance of wires with different indentation types under cyclic loading.
A total of 210 load tests, including 14 cyclic tests, were conducted. The monotonic-load tests revealed a large difference in the development length of pretensioned concrete members manufactured with different wire/strand types and different concrete-release strengths. Also, the cyclic-load tests revealed a significant difference in bond performance of different wire types under cyclic loading compared to monotonic loading.
|
9 |
Bond and Flexural Behaviour of Self Consolidating Concrete Beams Reinforced and Prestressed with FRP BarsKrem, Slamah 10 April 2013 (has links)
Self consolidating concrete (SCC) is widely used in the construction industry. SCC is a high performance concrete with high workability and consistency allowing it to flow under its own weight without vibration and making the construction of heavily congested structural elements and narrow sections easier. Fiber reinforced polymer (FRP) reinforcement, with its excellent mechanical properties and non-corrosive characteristic, is being used as a replacement for conventional steel reinforcement. In spite of the wide spread of SCC applications, bond and flexural behaviour of SCC beams reinforced or prestressed with FRP bars has not been fully studied. Furthermore, the ACI 440.1R-06 equation for determining the development length of FRP bars is based on Glass FRP (GFRP) bars and may not be applicable for Carbon FRP (CFRP) bars.
This research program included an experimental and analytical study to investigate the flexural and bond behaviour of SCC beams reinforced with FRP bars and SCC beams prestressed with CFRP bars. In the experimental phase, fifty-six beams were fabricated and tested. Sixteen of these beams were prestressed with CFRP bars and forty beams were reinforced with non-prestressed GFRP or CFRP bars. Four concrete batches were used to fabricate all the specimens. Three mixes were of self consolidating concrete (SCC) and one mix was of normal vibrated concrete (NVC). The test parameters for the non-prestressed beams were the concrete type, bar type and bar diameter, concrete cover thickness and embedment length while the test parameters for the prestressed beams were the concrete type and the prestressing level (30%, 45% and 60%). The transfer length of the prestressed CFRP bars was determined by means of longitudinal concrete strain profile and draw-in methods. All beams were tested in four-point bending to failure. Measurements of load, midspan deflection, bar slip if any at the beam ends, strain in reinforcing FRP bar at various locations, and strain in concrete at the beam midspan were collected during the flexural test.
The concrete compressive strength at flexural tests of SCC mix-1, mix-2, and mix-3 were 62.1MPa, 49.6MPa and 70.9MPa, respectively and for the NVC mix was 64.5MPa. The material test results showed that SCC mixes had lower modulus of elasticity mechanical properties than the NVC mix. The modulus of elasticity of the SCC mixes ranged between 65% and 82% of the NVC mix. The modulus of rupture of the SCC mixes was 86% of the NVC mixes.
The test results for beams prestressed with CFRP bars revealed that the variation of transfer length of CFRP bars in SCC versus their prestressing level was nonlinear. The average measured transfer lengths of 12.7mm diameter CFRP bars prestressed to 30%, 45% and 60% was found to be 25db, 40db, 54db, respectively. Measured transfer lengths of the 12.7mm diameter CFRP bar prestressed to 30% in SCC met the ACI440.4 prediction. However, as the prestressing level increased, the predicted transfer length became unconservative. At a 60% prestress level, the measured/prediction ratio was 1.25. Beams prestressed with CFRP bars and subjected to flexural testing with shear spans less than the minimum development length had local bar slippage within the transmission zone. Beams that experienced local bond slip, their stiffness was significantly decreased. A modification to the existing model used to calculate the transfer and development lengths of CFRP bars in NVC beams was proposed to account for the SCC.
The test results for beams reinforced with FRP bars indicated that the average bond strength of CFRP bars in NVC concrete is about 15% higher than that of GFRP bars in NVC. The ACI 440.1R-06 equation overestimated the development length of the CFRP bars by about 40%, while CAN/CSA-S6-06 equation was unconservative by about 50%. A new factor of (1/1.35) was proposed to estimate the development length of the CFRP bars in NVC when the ACI440.1R-06 equation is used.
Beams made from SCC showed closer flexural crack spacing than similar beams made from NVC at a similar loading. The deflection of beams made from SCC and reinforced with CFRP bars was found to be slightly larger than those made from NVC. The average bond stresses of GFRP and CFRP bars in SCC were comparable to those in NVC. However, FRP bars embedded in SCC beams had higher bond stresses within the uncracked region of the beams than those embedded in NVC beams. In contrast, FRP bars in SCC had lower bond stresses than FRP bars in NVC within the cracked region. The average bond strength of GFRP in SCC was increased by 15% when the concrete cover thickness increased from 1.0db to 3.0db. Cover thicknesses of 2db and 3db were found to be sufficient to prevent bond splitting failure of GFRP and CFRP bars in SCC, respectively. Bond splitting failure was recorded when the cover thickness dropped to 1.5db for the GRP bars and to 2.0db for the CFRP bars. An insignificant increase in average bond stress was found when the bar diameter decreased from 12.7mm to 6.3mm for the CFRP bars, and a similar increase occurred in GFRP bars when the bar diameter decreased from 15.9mm to 9.5mm.
New models to calculate the development length of GFRP and CFRP bars embedded in SCC were proposed based on the experimental results. These models capture the average bond stress profile along the embedment length. A good agreement was found between the proposed model and the experimental results.
Analytical modeling of the load-deflection response based on the effective moment of inertia (ISIS Canada M5) was unconservative for SCC beams reinforced with CFRP bars by 25% at ultimate loading. A new model for bond stress versus Ma/Mcr (applied moment to cracking moment) ratio was developed for GFRP and CFRP bars in SCC and for CFRP bars in NVC. These bond stress models were incorporated in a new rigorous model to predict the load-deflection response based on the curvature approach. The FRP bar extension and bond stress models were used to calculate the load-deflection response. With these models 90% of the calculated deflections were found to be within ± 15% of the experimental measured results for SCC beams reinforced with FRP bars.
Analytical modeling of the load-deflection for NVC and SCC beams prestressed with CFRP bars are proposed done. The moment resistance was calculated using Sectional Analysis approach. The deflection was calculated using simplified and detailed methods. The simplified method was based on the effective moment of inertia while the detailed method was based on effective moment of inertia and effective centroid. The experimental results correlated well with the detailed method at higher loads range.
This study provided an understanding of the mechanism of bond and flexural behaviour of FRP reinforced and prestressed SCC beams. The information presented in this thesis is valuable for designers using FRP bars as flexural reinforcement and also for the development of design guidelines for SCC structures.
|
10 |
Hydraulic Characteristics of Fully Developed Flow in Circular CulvertsKehler, Nicholas Jon 14 September 2009 (has links)
Throughout the world, particularly in countries such as Canada, water crossings are a significant part of the infrastructure system. Since corrugated metal pipe culverts are an inexpensive choice, as well as hydraulically efficient, they are a very appealing option to designers.
To ensure that the natural ecosystem is not adversely affected, culverts must be designed so that throughout the year fish can migrate upstream. Current design regulations are based on the average velocity within the culvert and the prolonged swimming speed of the fish species present. In order to examine the validity of this approach, a physical modeling study was undertaken using a circular CMP culvert.
It was found that there is significant cross sectional area below average velocity, and that gravel embedment further increases this area. In addition, a technique was developed that produced very agreeable streamwise velocity predictions over a two dimensional cross section in the developed region.
|
Page generated in 0.0689 seconds