• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • Tagged with
  • 25
  • 25
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coupled electron gases fabricated by in situ ion beam lithography and MBE growth

Brown, Karl January 1994 (has links)
No description available.
2

The fabrication of very short gate-length GaAs field effect transistor devices

Patrick, W. January 1985 (has links)
No description available.
3

Low cost high efficiency screen printed solar cells on Cz and epitaxial silicon

Chen, Chia-Wei 27 May 2016 (has links)
The objective of this research is to achieve high-efficiency, low-cost, commercial-ready, screen-printed Silicon (Si) solar cells by reducing material costs and raising cell efficiencies. Two specific solutions to material cost reduction are implemented in this thesis. The first one is low to medium concentrator (2-20 suns) Si solar cells. By using some optics to concentrate sunlight, the same amount of output power can be achieved with cell area reduced by a factor equal to the concentration ratio. Since the cost of optics is less than the semiconductor material, electricity price from the concentrator photovoltaics (PV) system is therefore reduced. The second solution is the use of epitaxially grown Si (epi-Si) wafers. This epi-Si technology bypasses three costly process steps (the need for polycrystalline silicon feedstock, ingot growth, and wafer slicing) compared to the traditional Si wafer technology and therefore reduces the material cost by up to 50% in a finished PV module. In addition, high efficiency Si solar cells with reduced metal contact recombination are studied and modeled by implementation of passivated contacts composed of tunnel oxide, n+ polycrystalline Si and metal on top of n-type Si absorber to reduce the cost ($/Wp) of PV module.
4

Device fabrication using Bi nanoclusters

Ayesh, Ahmad Ibrahim January 2007 (has links)
Nanoclusters have special importance in nanotechnology because of their low dimensionality, which provides electronic, chemical, and magnetic properties that differ from those of the equivalent bulk materials. Suitably controllable self-assembly methods are required in order to incorporate nanoclusters into useful devices. The self-assembly method used in this study employs V-grooves as a template element for nanocluster device fabrication. The V-grooves are fabricated by optical lithography on SiO2/Si wafers and KOH wet etching. Bi clusters deposited on a V-groove form a self-assembled conducting wire. The clusters are produced using an inert gas aggregation source inside an ultra high vacuum compatible system. In order to characterise the assembly process, Bi clusters with different average sizes and velocities are deposited on V-grooves with different widths. The cluster bouncing was found to be the main process in forming the cluster wires. The bouncing angles were smaller than the incident angle, and they are dependent on the cluster size and velocity. For a certain bouncing angle, the wire width reflects the V-groove width because of the fixed bouncing angle. Nanocluster devices were fabricated by depositing the clusters on V-grooves with pre-formed Au/NiCr electrical contacts. The amount of the deposited material required to form an electrically conducting wire was found to be a function of the V-groove width and the wire length. The two point I(V) measurements in the voltage range between -1 and +1V showed linear characteristics for low resistance wires (kΩ), and non-linear characteristics for the high resistance ones (MΩ). The silicon substrate was used as a back gate. Applying a voltage to the gate was found to modify the electrical conduction of the cluster wire. The temperature dependence of the resistance of the nanocluster wires was studied in the temperature range of 4.2-473K, and all of the measured wires showed a negative temperature coefficient of resistance. These measurements allowed a detailed study of the conduction mechanisms through the cluster wires. The study showed that Bi clusters can be used for device fabrication. To size select the clusters prior to using them for the device fabrication, a high transmission mass filter is required. This transmission can be obtained using the von Issendorff and Palmer mass filter if it is operated using the optimum operation conditions. The mass filter consists of two pairs of parallel plates with horizontal openings in Plates 1 and 2, and it operates on the time of flight principle. During this project, the operation conditions of this mass filter were studied using both experiment and simulation. The study showed that the beam deflection angle is a critical factor in optimising the mass filter transmission efficiency. This angle is dependent on the accelerating voltage, ion mass, and the horizontal velocity of the ions. The optimum operation conditions for the mass filter were found and used to study the mass distribution of Pd ions produced by a magnetron sputtering source with variable cluster aggregation length.
5

Device fabrication using Bi nanoclusters

Ayesh, Ahmad Ibrahim January 2007 (has links)
Nanoclusters have special importance in nanotechnology because of their low dimensionality, which provides electronic, chemical, and magnetic properties that differ from those of the equivalent bulk materials. Suitably controllable self-assembly methods are required in order to incorporate nanoclusters into useful devices. The self-assembly method used in this study employs V-grooves as a template element for nanocluster device fabrication. The V-grooves are fabricated by optical lithography on SiO2/Si wafers and KOH wet etching. Bi clusters deposited on a V-groove form a self-assembled conducting wire. The clusters are produced using an inert gas aggregation source inside an ultra high vacuum compatible system. In order to characterise the assembly process, Bi clusters with different average sizes and velocities are deposited on V-grooves with different widths. The cluster bouncing was found to be the main process in forming the cluster wires. The bouncing angles were smaller than the incident angle, and they are dependent on the cluster size and velocity. For a certain bouncing angle, the wire width reflects the V-groove width because of the fixed bouncing angle. Nanocluster devices were fabricated by depositing the clusters on V-grooves with pre-formed Au/NiCr electrical contacts. The amount of the deposited material required to form an electrically conducting wire was found to be a function of the V-groove width and the wire length. The two point I(V) measurements in the voltage range between -1 and +1V showed linear characteristics for low resistance wires (kΩ), and non-linear characteristics for the high resistance ones (MΩ). The silicon substrate was used as a back gate. Applying a voltage to the gate was found to modify the electrical conduction of the cluster wire. The temperature dependence of the resistance of the nanocluster wires was studied in the temperature range of 4.2-473K, and all of the measured wires showed a negative temperature coefficient of resistance. These measurements allowed a detailed study of the conduction mechanisms through the cluster wires. The study showed that Bi clusters can be used for device fabrication. To size select the clusters prior to using them for the device fabrication, a high transmission mass filter is required. This transmission can be obtained using the von Issendorff and Palmer mass filter if it is operated using the optimum operation conditions. The mass filter consists of two pairs of parallel plates with horizontal openings in Plates 1 and 2, and it operates on the time of flight principle. During this project, the operation conditions of this mass filter were studied using both experiment and simulation. The study showed that the beam deflection angle is a critical factor in optimising the mass filter transmission efficiency. This angle is dependent on the accelerating voltage, ion mass, and the horizontal velocity of the ions. The optimum operation conditions for the mass filter were found and used to study the mass distribution of Pd ions produced by a magnetron sputtering source with variable cluster aggregation length.
6

Patterning of Perovskite Single Crystals

Corzo Diaz, Daniel Alejandro 12 June 2017 (has links)
As the internet-of-things hardware integration continues to develop and the requirements for electronics keep diversifying and expanding, the necessity for specialized properties other than the classical semiconductor performance becomes apparent. The success of emerging semiconductor materials depends on the manufacturability and cost as much as on the properties and performance they offer. Solution-based semiconductors are an emerging concept that offers the advantage of being compatible with large-scale manufacturing techniques and have the potential to yield high-quality electronic devices at a lower cost than currently available solutions. In this work, patterns of high-quality MAPbBr3 perovskite single crystals in specific locations are achieved through the modification of the substrate properties and solvent engineering. The fabrication of the substrates involved modifying the surface adhesion forces through functionalization with self-assembled monolayers and patterning them by photolithography processes. Spin coating and blade coating were used to deposit the perovskite solution on the modified silicon substrates. While single crystal perovskites were obtained with the modification of substrates alone, solvent engineering helped with improving the Marangoni flows in the deposited droplets by increasing the contact angle and lowering the evaporation rate, therefore controlling and improving the shape of the grown perovskite crystals. The methodology is extended to other types of perovskites such as the transparent MAPbCl3 and the lead-free MABi2I9, demonstrating the adaptability of the process. Adapting the process to electrode arrays opened up the path towards the fabrication of optoelectronic devices including photodetectors and field-effect transistors, for which the first iterations are demonstrated. Overall, manufacturing and integration techniques permitting the fabrication of single crystalline devices, such as the method in this thesis work, are fundamental in pushing hybrid perovskites towards commercialization.
7

Fabrication and Characterization of Narrow-Stripe Quantum Well Laser Diodes

Chern, Kevin Tsun-Jen 17 September 2010 (has links)
More efficient semiconductor lasers will be needed in tomorrow's applications. These lasers can only be realized through the application of new device processing techniques, designed to restrict current, carrier, and/or photon flow through the lasing cavity. This work aims to evaluate a non-conventional stripe laser processing technique which has the potential for effective current and possibly carrier confinement at low cost. This technique, referred to as hydrogen passivation, involves exposing laser material to a low energy hydrogen plasma, causing hydrogen ions to bind to charged acceptor and donor atoms. Such binding compensates the electrical activity of these dopant atoms and thereby increases the resistance of the exposed material. Optical confinement can also be achieved (subsequent to hydrogenation) by using a simple wet-etching process to form a lateral waveguide. Stripe lasers fabricated via hydrogen passivation have been demonstrated previously; however, the benefits of this method have not been fully explored or characterized. Our work aims to quantify the degree of current and carrier confinement provided by this technique. The cleaved cavity method of analysis is used to extract laser parameters via direct measurement. These parameters are then compared against those obtained from more conventional stripe lasers to identify improvements that have accrued from using hydrogen passivation. / Master of Science
8

A Multi-Physics Computational Approach to Simulating THz Photoconductive Antennas with Comparison to Measured Data and Fabrication of Samples

Boyd, Darren Ray 01 January 2014 (has links)
The frequency demands of radiating systems are moving into the terahertz band with potential applications that include sensing, imaging, and extremely broadband communication. One commonly used method for generating and detecting terahertz waves is to excite a voltage-biased photoconductive antenna with an extremely short laser pulse. The pulsed laser generates charge carriers in a photoconductive substrate which are swept onto the metallic antenna traces to produce an electric current that radiates or detects a terahertz band signal. Therefore, analysis of a photoconductive antenna requires simultaneous solutions of both semiconductor physics equations (including drift-diffusion and continuity relations) and Maxwell’s equations. A multi-physics analysis scheme based on the Discontinuous-Galerkin Finite-Element Time-Domain (DGFETD) is presented that couples the semiconductor drift-diffusion equations with the electromagnetic Maxwell’s equations. A simple port model is discussed that efficiently couples the two equation sets. Various photoconductive antennas were fabricated using TiAu metallization on a GaAs substrate and the fabrication process is detailed. Computed emission intensities are compared with measured data. Optimized antenna designs based on the analysis are presented for a variety of antenna configurations.
9

High Efficiency GaAs-based Solar Cells Simulation and Fabrication

January 2014 (has links)
abstract: GaAs-based solar cells have attracted much interest because of their high conversion efficiencies of ~28% under one sun illumination. The main carrier recombination mechanisms in the GaAs-based solar cells are surface recombination, radiative recombination and non-radiative recombination. Photon recycling reduces the effect of radiative recombination and is an approach to obtain the device performance described by detailed balance theory. The photon recycling model has been developed and was applied to investigate the loss mechanisms in the state-of-the-art GaAs-based solar cell structures using PC1D software. A standard fabrication process of the GaAs-based solar cells is as follows: wafer preparation, individual cell isolation by mesa, n- and p-type metallization, rapid thermal annealing (RTA), cap layer etching, and anti-reflection coating (ARC). The growth rate for GaAs-based materials is one of critical factors to determine the cost for the growth of GaAs-based solar cells. The cost for fabricating GaAs-based solar cells can be reduced if the growth rate is increased without degrading the crystalline quality. The solar cell wafers grown at different growth rates of 14 μm/hour and 55 μm/hour were discussed in this work. The structural properties of the wafers were characterized by X-ray diffraction (XRD) to identify the crystalline quality, and then the as-grown wafers were fabricated into solar cell devices under the same process conditions. The optical and electrical properties such as surface reflection, external quantum efficiency (EQE), dark I-V, Suns-Voc, and illuminated I-V under one sun using a solar simulator were measured to compare the performances of the solar cells with different growth rates. Some simulations in PC1D have been demonstrated to investigate the reasons of the different device performances between fast growth and slow growth structures. A further analysis of the minority carrier lifetime is needed to investigate into the difference in device performances. / Dissertation/Thesis / M.S. Electrical Engineering 2014
10

Lasing in cuprous iodide microwires

Wille, Marcel, Krüger, Evgeny, Blaurock, Steffen, Zviagin, Vitaly, Deichsel, Rafael, Benndorf, Gabriele, Trefflich, Lukas, Gottschalch, Volker, Krautscheid, Harald, Schmidt-Grund, Rüdiger, Grundmann, Marius 06 August 2018 (has links)
We report on the observation of lasing in cuprous iodide (CuI) microwires. A vapor-phase transport growth procedure was used to synthesize CuI microwires with low defect concentration. The crystal structure of single microwires was determined to be of zincblende-type. The high optical quality of single microwires is indicated by the observed series of excitonic emission lines as well as by the formation of gain under optical excitation. Lasing of triangular whispering-gallery modes in single microwires is demonstrated for fs- and ns-excitation from cryogenic temperatures up to 200 K. Timeresolved micro-photoluminescence studies reveal the dynamics of the laser process on the time scale of several picoseconds.

Page generated in 0.1208 seconds