• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The roles of pancreatic hormones in regulating pancreas development and beta cell regeneration

Ye, Lihua 16 June 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Diabetes mellitus is a group of related metabolic diseases that share a common pathological mechanism: insufficient insulin signaling. Insulin is a hormone secreted from pancreatic β cells that promotes energy storage and consequently lowers blood glucose. In contrast, the hormone glucagon, released by pancreatic α cells, plays a critical complementary role in metabolic homeostasis by releasing energy stores and increasing blood glucose. Restoration of β cell mass in diabetic patients via β cell regeneration is a conceptually proven approach to finally curing diabetes. Moreover, in situ regeneration of β cells from endogenous sources would circumvent many of the obstacles encountered by surgical restoration of β cell mass via islet transplantation. Regeneration may occur both by β cell self-duplication and by neogenesis from non-β cell sources. Although the mechanisms regulating the β cell replication pathway have been highly investigated, the signals that regulate β cell neogenesis are relatively unknown. In this dissertation, I have used zebrafish as a genetic model system to investigate the process of β cell neogenesis following insulin signaling depletion by various modes. Specifically, I have found that after their ablation, β cells primarily regenerate from two discrete cellular sources: differentiation from uncommitted pancreatic progenitors and transdifferentiation from α cells. Importantly, I have found that insulin and glucagon play crucial roles in controlling β cell regeneration from both sources. As with metabolic regulation, insulin and glucagon play counter-balancing roles in directing endocrine cell fate specification. These studies have revealed that glucagon signaling promotes β cell formation by increasing differentiation of pancreas progenitors and by destabilizing α cell identity to promote α to β cell transdifferentiation. In contrast, insulin signaling maintains pancreatic progenitors in an undifferentiated state and stabilizes α cell identity. Finally, I have shown that insulin also regulates pancreatic exocrine cell development. Insufficient insulin signaling destabilized acinar cell fate and impairs exocrine pancreas development. By understanding the roles of pancreatic hormones during pancreas development and regeneration can provide new therapeutic targets for in vivo β cell regeneration to remediate the devastating consequences of diabetes.
12

F-Actin regulation of SNARE-mediated insulin secretion

Kalwat, Michael Andrew 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In response to glucose, pancreatic islet beta cells secrete insulin in a biphasic manner, and both phases are diminished in type 2 diabetes. In beta cells, cortical F-actin beneath the plasma membrane (PM) prevents insulin granule access to the PM and glucose stimulates remodeling of this cortical F-actin to allow trafficking of insulin granules to the PM. Glucose stimulation activates the small GTPase Cdc42, which then activates p21-activated kinase 1 (PAK1); both Cdc42 and PAK1 are required for insulin secretion. In conjunction with Cdc42-PAK1 signaling, the SNARE protein Syntaxin 4 dissociates from F-actin to allow SNARE complex formation and insulin exocytosis. My central hypothesis is that, in the pancreatic beta cell, glucose signals through a Cdc42-PAK1-mediated pathway to remodel the F-actin cytoskeleton to mobilize insulin granules to SNARE docking sites at the PM to evoke glucose stimulated second phase insulin secretion. To investigate this, PAK1 was inhibited in MIN6 beta cells with IPA3 followed by live-cell imaging of F-actin remodeling using the F-actin probe, Lifeact-GFP. PAK1 inhibition prevented normal glucose-induced F-actin remodeling. PAK1 inhibition also prevented insulin granule accumulation at the PM in response to glucose. The ERK pathway was implicated, as glucose-stimulated ERK activation was decreased under PAK1-depleted conditions. Further study showed that inhibition of ERK impaired insulin secretion and cortical F-actin remodeling. One of the final steps of insulin secretion is the fusion of insulin granules with the PM which is facilitated by the SNARE proteins Syntaxin 4 on the PM and VAMP2 on the insulin granule. PAK1 activation was also found to be critical for Syntaxin 4-F-actin complex dynamics in beta cells, linking the Cdc42-PAK1 signaling pathway to SNARE-mediated exocytosis. Syntaxin 4 interacts with the F-actin severing protein Gelsolin, and in response to glucose Gelsolin dissociates from Syntaxin 4 in a calcium-dependent manner to allow Syntaxin 4 activation. Disrupting the interaction between Syntaxin 4 and Gelsolin aberrantly activates endogenous Syntaxin 4, elevating basal insulin secretion. Taken together, these results illustrate that signaling to F-actin remodeling is important for insulin secretion and that F-actin and its binding proteins can impact the final steps of insulin secretion.

Page generated in 0.0524 seconds