• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

6,6-Diaryl Fulvenes. Reduction to Benzhydryl Cyclopentadiene by Amide Bases

Lorenz, Helmuth Heinrich 02 1900 (has links)
<p> This work was started to investigate new methods of synthesizing certain fulvenes. It was hoped that nucleophilic aromatic substitution of chlorine on 6,6-bis-(p-chlorophenyl) fulvene would provide an alternate route for the preparation of para-substituted 6,6-diphenyl fulvenes which had previously been prepared through the appropriately para-substituted benzophenone and cyclo-pentadienide (1,2). Attempts to prepare these substituted 6,6-diphenylfulvenes were unsuccessful.</p> <p> Secondly, a method of alkylating certain fulvenes in the cyclopentadiene ring was studied. With this in mind, 6,6-diphenylfulvene was treated with various nucleophiles which should give the relatively stable cyclopentadienide intermediate if the base adds to the exocyclic carbon atom. Alkylation of this anion, followed by expulsion of the nucleophilic group and a proton should then generate a new fulvene alkylated in the cyclopentadiene ring. In no case was any alkylated fulvene isolated. The major reaction products were two isomers of benzhydryl cyclopentadiene, rather than the expected alkylated fulvenes. The benzhydryl cyclopentadiene (mixture of two isomers) appears to have resulted from a reduction reaction.</p> <p> Since fulvenes of the type under study are generally unstable, an attempt was made to trap these alkylated fulvenes, if these were present, as their Diels-Alder adducts with tetracyanoethylene (TCNE). This attempt gave the adduct from one of the isomers of benzhydryl cyclopentadiene. The adducts from the other two possible isomers of benzhydryl cyclopentadiene were not detected. This result is an indication of the different reactivities of these isomers to TCNE.</p> <p> From the absence of TCNE adducts of the expected alkylated fulvenes, it was concluded that these fulvenes had not materialized in the attempted alkylation.</p> / Thesis / Master of Science (MSc)
2

Synthesis of Dibenzofurans via a Palladium Catalyzed Oxidative Ring Closure Reaction

Akram, Sadia 01 May 2013 (has links)
The cannabinoid partial agonist BAY 59-3704 has been identified as an attractive target to explore structure-activity relationships at cannabinoid receptors for the development of a therapeutic agent for psychostimulant addiction. This thesis will describe the studies associated with the optimization of a palladium-catalyzed oxidative ring closure reaction for the synthesisof dibenzofuran analogues from substituted diaryl ethers. These dibenzofurans are viewed as rigid analogues of BAY 59-3704 and will provide useful information about molecular interactions at cannabinoid receptors. The scope and limitations of the palladium-catalyzed oxidative ring closure reaction as it relates to the synthesis of the target dibenzofuran analogues will be presented.
3

Studies Towards the Total Synthesis of Ristocetin A and Orienticin C Aglycones

Ciurea, Diana Victoria January 2008 (has links)
No description available.
4

Ullmann etherification

Cox, Robert John January 2015 (has links)
Formation of the diaryl ether moiety remains a challenging target for organic synthesis despite modern technologies, however, better understanding of older techniques often leads to improvements. The copper-catalysed Ullmann ether synthesis, whilst attractive in many ways, is frequently problematic due to the inherent irreproducibility of the reaction on scale up. Little is yet known about the mechanism of the reaction and conflicting views are rife within the scientific community. In a well-studied example, we show that the potassium iodide formed during the reaction slows catalysis. Additionally, the deprotonation of phenol is complicated by the insolubility of the inorganic base. This results in a beneficial outcome, providing a rate enhancement and reduction of by-products, which can be further exploited to provide lower stoichiometries, improved selectivity and greater functional group tolerance. The development of an improved, more reproducible procedure in combination with reaction calorimetry has allowed the mechanism to be studied in intricate detail. Excellent agreement with a mechanistic model has led to further insight into the enigmatic aryl halide activation and provides good evidence for a single electron transfer mechanism. In addition, evidence for a dynamic catalyst resting state has been observed which adds to the complexity of the mechanism. This, in turn, leads to a fine balance of concentration and electronic effects that prove vital to the rate of reaction.
5

Development and Applications of Hypervalent Iodine Compounds : Powerful Arylation and Oxidation Reagents

Jalalian, Nazli January 2012 (has links)
The first part of this thesis describes the efficient synthesis of several hypervalent iodine(III) compounds. Electron-rich diaryliodonium salts have been synthesized in a one-pot procedure, employing mCPBA as the oxidant. Both symmetric and unsymmetric diaryliodonium tosylates can be isolated in high yields. An in situ anion exchange also enables the synthesis of previously unobtainable diaryliodonium triflates. A large-scale protocol for the synthesis of a derivative of Koser’s reagent, that is an isolable intermediate in the diaryliodonium tosylate synthesis, is furthermore described. The large-scale synthesis is performed in neat TFE, which can be recovered and recycled. This is very desirable from an environmental point of view. One of the few described syntheses of enantiopure diaryliodonium salts is discussed. Three different enantiopure diaryliodonium salts bearing electron-rich substituents are synthesized in moderate to high yields. The synthesis of these three salts shows the challenge in the preparation of electron-rich substituted unsymmetric salts. The second part of the thesis describes the application of both symmetric and unsymmetric diaryliodonium salts in organic synthesis. A metal-free efficient and fast method for the synthesis of diaryl ethers from diaryliodonium salts has been developed. The substrate scope is wide as both the phenol and the diaryliodonium salt can be varied. Products such as halogenated ethers, ortho-substituted ethers and bulky ethers, that are difficult to obtain with metal-catalyzed procedures, are readily prepared. The mild protocol allows arylation of racemization-prone a-amino acid derivatives without loss of enantiomeric excess. A chemoselectivity investigation was conducted, in which unsymmetric diaryliodonium salts were employed in the arylation of three different nucleophiles in order to understand the different factors that influence which aryl moiety that is transferred to the nucleophile. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Accepted. Paper 5: Submitted. Paper 6: Manuscript.</p>
6

X-ray crystallographic studies of sulfur/selenium heteroatom compounds

Du, Junyi January 2016 (has links)
The major aim of research reported on this thesis uses X-ray crystallography to investigate the structural features of a series of pentafluorosulfuranyl (SF₅) containing aromatic compounds, chalcogen amides, 2,4-diaryl-1,3-selenazoles and 2,4-diaryl-1,3-chalcogen azoles bearing SF₅ group and organo phosphorus-chalcogen macrocycles incorporationg double OP(S)SC[sub]n or OP(Se)SeC[sub]n scaffolds. The basic theory of crystallography is introduced in Chapter 1, followed by a general discussion on pentafluorosulfuranyl (SF₅) containing heteroatom compounds and sulfur/selenium heterocycles in Chapter 2. Ten pentafluorosulfuranyl (SF₅)-containing aromatic compounds have been studied crystallographically in Chapter 3. All S-F bond lengths in these compounds are very similar [1.571(3) to 1.618(3) Å and 178.5(3) to 180.0° for the C-S-F(ax) bond] and the angles of two adjacent F(eq) is approximate to 90°. The intramolecular C[sub](aryl)-H···F(eq) and intermolecular C[sub](aryl)-H···O/N/F/Cl interactions, and π-stacking interactions are observed in the packing frameworks. X-ray crystal structure analysis reveals that in the structures of 2,4-diaryl-1,3-selenazoles in Chapter 4, the five-membered N-C-Se-C-C rings have either planar or near-planar conformations, and exhibit a series of the intramolecular and intermolecular C-H∙∙∙O/N/Se/Br/Cl) interactions and π-stacking interactions. The crystal structures of 2,4-diaryl-1,3-chalcogen azoles with both a pentafluorosulfuranyl (SF₅) group and a five-membered N-C-Se-C-C ring have been investigated in Chapter 5. A diverse picture of molecular configuration and intramolecular/intermolecular C-H∙∙∙N/Se/S and π-stacking interactions information are disclosed in selenamide, thiamides, 1,3-selenazoles and 1,3-thiazoles. Nine organo phosphorus-chalcogen macrocycles with nine- to fifteen-membered ring incorporating double OP(S)SC[sub]n or OP(Se)SeC[sub]n scaffolds have been discussed crystallographically in Chapter 6. The similar intramolecular and intermolecular C-H∙∙∙O, C-H∙∙∙S or C-H∙∙∙Se interactions are observed to lead to the similar packing networks.
7

Synthesis of new calcineurin inhibitors via Pd-catalyzed cross-coupling reactions

Yin, Lunxiang 21 July 2005 (has links)
In dieser Dissertation versuche ich, die zentralen Nitrogen-heterocyclischen Kerne, die Seitenketten und deren Position zu variieren. Als synthetische Strategie wurden Palladium-katalysierte Kupplungsreaktionen verwendet, um Seitenketten und Aryl-Substituenten einzuführen. Halogensubstituierte Diarylheterocyclen sind wichtige Intermediate in der Synthese der allgemeine Strukture. Die Einführung der gewünschten Seitenketten durch Carbon-Carbon und Carbon-Nitrogen-Bindungsknüpfung wurde durch Sonogashira-Kupplung, Heck-Kupplung und Buchwald-Hartwig-Aminierung erzielt. Mit der Sonogashira-Reaktion kann eine funktionalisierte Alkynylgruppe in die heterocyclischen Kerne effektiv und bequem eingeführt werden. Eine anschliessende katalytische Hydrierung der Alkynylgruppe führt zu funktionalisierten Alkyl substituierten Diarylheterocyclen. In der vorliegenden Arbeit wurden mehr als 180 Substanzen synthetisiert. Unter ihnen sind ungefähr 130 neue Substanzen. 86 von ihnen passen in die allgemeine Strukture. / In the present thesis, I tried to vary the central nitrogen-heterocyclic cores, the functionalised side chains and its position of attachment. As a synthetic strategy, palladium-catalyzed coupling reactions were used to introduce side chains and aryl substituents into the central heterocycle. In this way the utility of such reactions to heterocyclic systems, which were neglected so far, could be figured out. Halogen substituted diaryl heterocycles are important intermediates in the synthesis of general structures. The introduction of the desired side chains by Carbon-Carbon bond formation reactions was achieved by Sonogashira coupling and Heck coupling. Buchwald-Hartwig amination and nucleophilic substitution were used to establish side chains which are connected to the core heterocycle by heteroatom-Carbon bonds. Sonogashira reaction turned out to be the most effective and convenient method to introduce functionalized alkynyl group into the heterocyclic cores. In the present work, more than 180 compounds were synthesized. Among them, about 130 compounds are new products. 86 of them fit into the general structure.
8

Synthesis of Optically Pure Nitrogenated Ligands and their uses in Asymmetric Catalysis / Synthèses des ligands azotés optiquement pures pour leurs utilisations en catalyse asymétrique

El Asaad, Bilal 07 July 2017 (has links)
Des nouveaux ligands chiraux diamine N-aromatiques, dérivés de 1,2-diaminocyclohexane et des a et ß- cétones cycliques aromatiques, ont été synthétisés par alkylation-déshydrogénation catalysée par le palladium sur charbon (Pd/C). Cette méthode, nous a permis de préparer un série des ligands chiraux de types N,N-di-aryles diamine and N-aryle diamine avec de très bons rendements isolés.Premièrement, les efficacités des ligands synthétisés ont été examinées avec succès dans la réaction de réduction par transfert d'hydrure des cétones aromatiques, catalysée avec des catalyseurs homogènes d'iridium formés in situ iridium assistés par l'acide formique et son sel de sodium. Des cétones aromatiques variés ont été réduits, suivant la méthode y développée, en des alcools correspondants avec des complètes et des hautes énantiosélectivités (ee jusqu'au 93%). Ensuite, deux ligands diamine, N,N'-dinaphtyle diaminocylohexane et N-naphtyle diaminocylohexane complexés avec le Cu (II) ont été évalués dans la réaction asymétrique de Henry entre des dérivés de benzaldéhyde et le nitrométhane conduisant aux ß-nitro-aryle-alcools avec des bonnes énantiosélectivités (ee jusqu'au 83%) et des bons rendements isolés. On a aussi transformé ces deux ligands, en sels d'imidazolinium précurseurs des carbènes, pour des ultérieures application en catalyse asymétrique. Le dérrivé mono N-aryle diamine a été transformé en ligand mono-thio. Les trois ligands ainsi préparés ont été obtenus avec des bons rendements isolés / New chiral N-arylated diamine ligands, derived from 1,2-diaminocyclohexane and a and ß-cyclic-aromatic ketone, were synthesized by dehydrogenative alkylation catalyzed by palladium on carbon (Pd/C). This method, allowed to prepare a series of chiral N,N-diarylated diamine and N-aryl diamine ligands with very good isolated yield.First of all, the applicability of the synthesized chiral diamine ligands was successfully examined in asymmetric transfer hydrogenation with homogeneous iridium catalyst associated to formic acid and its sodium salt. Various aromatic ketones were reduced to chiral alchohol with a complete conversion and high enantioselectivity (ee up to 93%). Then, two of the prepared chiral diamine, N,N’-dinaphtyl diaminocylohexane and N-naphtyl diaminocylohexane combined to copper (II), have been evaluated in asymmetric Henry reaction between benzaldehyde derivatives and nitromethane leading to ß-nitro-aryl-alcohol with good enantioselectivities (ee up to 83%) and good isolated yields.Furthermore, we transform these two ligands into imidazolinium salts precursor of carbenes, for further application in asymmetric catalysis. The mono N-arylated diamine was transformed into mono-thiourea ligand. These three new ligands were obtained with very good isolated yields
9

Couplage en liquide ionique pour l'accès à des molécules macrocycliques d'intérêt biologique / Coupling in ionic liquid of molecules with biological interest

Jebri, Khouloud 08 December 2016 (has links)
Le présent travail décrit l'utilisation des liquides ioniques comme solvant de réaction dans plusieurs types de couplage permettant la création de liaisons C-C, C-N et C-O. Dans un premier temps, ces solvants ont permis d'effectuer la synthèse des a-oxo gamma-thio-esters via la réaction de condensation de Mukaiyama de l'énoxysilane du pyruvate d'éthyle sur des thioacétals. Dans le cadre d'une stratégie de synthèse multi-étape en liquide ionique, la synthèse des produits de départ a été également menée à bien dans ces solvants. Ensuite, une application des liquides ioniques dans la chimie des peptides a été décrite. Une série de di- et tri-peptides formés essentiellement par des dérivés de la tyrosine a été obtenue avec de bons rendements dans ces milieux ioniques, en ayant recours à des agents de couplage modernes tels que HATU et BOP. Une réactivité différente a été observée dans les liquides ioniques comparée à celle dans les solvants moléculaires classiques. Des sels de cuivre (I) et (II) ont été utilisés pour catalyser la réaction de couplage diaryl éther intermoléculaire dans les liquides ioniques, à partir des dérivés de la tyrosine afin d'obtenir des motifs isodityrosines. Le couplage d'Ullmann n'a pas été efficace à cause de la présence de contraintes électroniques et stériques, tandis que le couplage de Chan-Lam s'est révélé plus intéressant et il a permis d'obtenir les motifs isodityrosines avec des rendements satisfaisants. De plus, celui-ci présente l'avantage d'utiliser des conditions opératoires plus douces. / This thesis describes our studies regarding the organic synthesis in ionic liquids allowing the creation of C-C, C-N and C-O bonds. We describe the synthetic approaches of alpha-oxo gamma-thio-esters via the Mukayaima condensation of the enoxysilane of ethyl pyruvate on thioacetals. In the context of a multi-step synthesis strategy in ionic liquid, the synthesis of the starting materials was also carried out in these solvents. We also present an application of ionic liquids in peptide chemistry: cyclopeptides containing biaryl and biaryl ether linkages. These compounds have attracted considerable interest due to the significant biological activities that most of them exhibit, including antimicrobial and cytotoxic activities. We describe the synthetic approaches of macrocyclic peptides from tyrosine derivatives in ionic liquids. Two main strategies are investigated for the synthesis of macromolecules, peptidic coupling from tyrosine derivatives followed by formation of the biaryl ether bridge as key step and macrolactamization of the preformed biaryl ether, using modern coupling agents such as HATU and BOP. A different reactivity was observed in ionic liquids compared to that in conventional molecular solvents. Copper (I) and (II) salts have been used to catalyze the intermolecular diaryl ether coupling reaction in ionic liquids from tyrosine derivatives to obtain isodityrosine units. Ullmann coupling was not effective due to the presence of electronic and steric constraints, while the Chan-Lam coupling proved to be more advantageous and allowed the formation the isodityrosine units with satisfactory yields . In addition, the Chan-Lam has the advantage of using milder operating conditions.
10

Novel Metal-Mediated Organic Transformations : Focusing on Microwave Acceleration and the Oxidative Heck Reaction

Enquist, Per-Anders January 2006 (has links)
<p>Transition metals have played an important role in synthetic organic chemistry for more than a century, and offer catalytic transformations that would have been impossible with classical chemistry. One of the most useful and versatile of the transition metals is palladium, which over the years has catalyzed many important carbon-carbon forming reactions. Popular cross-coupling reactions such as the Suzuki, Stille and the Heck reaction are all catalyzed by palladium, or more correctly, by palladium in its ground state, Pd(0). </p><p>Recently, interest in palladium(II)-catalyzed transformations has started to grow, partly due to the development of the vinylic substitution reaction, commonly called the oxidative Heck reaction, presented in this thesis. This Pd(II)-catalyzed, ligand-modulated reaction occurs under air at room temperature, and for the first time a general protocol employing a wide range of olefins and arylboronic acids was obtained. Ligand screening showed that the bidentate nitrogen ligand, 2,9-dimethyl-1,10-phenanthroline (dmphen), was the most suitable ligand. Dmphen is believed to facilitate regeneration of active Pd(II), increase catalytic stability and improve the regioselectivity in the reaction. A mechanistic investigation was conducted using electrospray ionization mass spectrometry (ESI-MS), making it possible to observe cationic intermediates in a productive oxidative Heck arylation. The results obtained are in agreement with the previously proposed catalytic cycle.</p><p>The emerging discipline of high-speed synthesis is making contributions to society’s growing demand for new chemical entities. This inspired the development of two ultrafast, microwave-accelerated carbonylation reactions with dicobalt octacarbonyl acting both as an in situ carbon monoxide supplier and reaction mediator. A wide range of symmetrical benzophenones was produced in only 6 to 10 s, using aryl iodides as the substrate. The second carbonylation reaction provided symmetrical and unsymmetrical ureas in process times ranging from 10 s to 40 minutes using primary and secondary amines.</p>

Page generated in 0.046 seconds