• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 17
  • 7
  • 5
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 45
  • 42
  • 22
  • 21
  • 18
  • 17
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

PREDICTION OF THERMAL DISTORTION AND THERMAL FATIGUE IN SHOT SLEEVES

Shi, Qi 18 October 2002 (has links)
No description available.
32

Sensitivity Analysis of Casting Distortion and Residual Stress Prediction Through Simulation Modeling and Experimental Verification

Ragab, Adham Ezzat 12 May 2003 (has links)
No description available.
33

A numerical study of externally solidified products in the cold chamber die casting process

Mao, Haijing 12 October 2004 (has links)
No description available.
34

Analysis of in-cavity thermal and pressure characteristics in aluminum alloy die casting

Venkatasamy, Vasanth Kumar January 1996 (has links)
No description available.
35

Visualization for Runner System Design in Die Casting

Ning, Zhaohui 01 October 2009 (has links)
No description available.
36

A Modified Life Cycle Inventory of Aluminium Die Casting

Roberts, Michael John, kimg@deakin.edu.au,jillj@deakin.edu.au,mikewood@deakin.edu.au,wildol@deakin.edu.au January 2003 (has links)
Aluminium die casting is a process used to transform molten aluminium material into automotive gearbox housings, wheels and electronic components, among many other uses. It is used because it is a very efficient method of achieving near net shape with the required mechanical properties. Life Cycle Assessment (LCA) is a technique used to determine the environmental impacts of a product or process. The Life Cycle Inventory (LCI) is the initial phase of an LCA and describes which emissions will occur and which raw materials are used during the life of a product or during a process. This study has improved the LCI technique by adding in manufacturing and other costs to the ISO standardised methods. Although this is not new, the novel application and allocation methods have been developed independently. The improved technique has then been applied to Aluminium High Pressure Die Casting. In applying the improved LCI to this process, the cost in monetary terms and environmental emissions have been determined for a particular component manufactured by this process. A model has been developed in association with an industry partner so this technique can be repeatedly applied and used in the prediction of costs and emissions. This has been tested with two different products. Following this, specialised LCA software modelling of the aluminium high pressure die casting process was conducted. The variations in the process have shown that each particular component will have different costs and emissions and it is not possible to generalise the process by modelling only one component. This study has concentrated on one process within die casting but the techniques developed can be used across any variations in the die casting process.
37

Development of Mg-Al-Sn and Mg-Al-Sn-Si Alloys and Optimization of Super Vacuum Die Casting Process for Lightweight Applications

Klarner, Andrew Daniel 01 June 2018 (has links)
No description available.
38

Semisolid Die Casting of Wrought A6061 Aluminium Alloy

Kini, Anoop Raghunath January 2013 (has links) (PDF)
The mechanical properties achieved with high performance wrought aluminium alloys are superior to cast aluminum alloys. To obtain an intricate shaped component, wrought alloys are commonly subjected to forging followed by subsequent machining operation in the automobile industry. As machining of such high strength wrought aluminium alloys adds to cost, productivity gets affected. Shortening the process by near net shaped casting would tremendously enhance productivity. However, casting of such alloys frequently encounter hot tear defect. Therefore, circumventing hot tear to successfully die cast near net shaped wrought alloy components is industrially relevant. A recent advanced casting process, namely ‘Semisolid Die casting’, is proposed as a likely solution. Hot tearing originates due to lack of liquid flow in the inter-dendritic region. To reduce hot tear susceptibility, fine and non-dendritic grain structure is targeted, amenable for processing by semisolid route. For semisolid processing an adequate freezing range for processing is required. Accordingly A6061 wrought alloy whose composition is tuned with higher silicon and magnesium content within the grade limits, is chosen for the study. With the objective of obtaining fine and non-dendritic microstructured billets, electromagnetic stirring (EMS) and cooling slope (CS) methods are employed. On conducting a parametric study with EMS, a finest possible primary α-Al grain size of about 70 μm is obtained at low stirring time at stirring current levels of 175 A and 350 A, with the addition of grain refiner. CS, on the other hand, rendered a grain of 60 μm at a slope length of 300 mm at a slope angle of 45° with grain refiner addition. Of the two methods, CS billets are chosen for subsequent induction heating. A 3-step induction heating cycle has been devised to attain a temperature of 641°C in the billet on the basis of factors including coherency point, viscosity of the slurry and solid fraction sensitivity with temperature. The billet microstructure is found to be homogenous throughout after quenching in water. The characterization of phase along primary α-Al grain boundary and its composition analysis is done by SEM and EPMA respectively, after billet casting as well as induction heating. In addition, the bulk hardness is determined in BHN. The induction heated billets are semisolid die cast to produce an engine connecting rod used in automobiles. The microstructure is characterized at various locations, and is found to consist of smooth α-Al grains in a background matrix of fine grains formed due to secondary solidification. The component hardness is found to be 66 BHN comparable with A6061 alloy under T4 heat treated condition. X-ray radiography does not confirm presence of surface hot tear, which is the normal defect associated with casting of wrought aluminium alloys. No defects are observed along the constant cross-sectional area of the connecting rod, suggesting that the processing could be suitable for semisolid extrusion.
39

Rapid die manufacturing using direct laser metal deposition

Pereira, M.F.V.T., Williams, M., Bruwer, R. January 2009 (has links)
Published Article / Global issues such as energy and climate changes have impacted on both the automotive and aerospace industries, forcing them to adopt measures to produce products that consume fewer combustibles and emit less carbon dioxide. Making vehicles lighter is one of the logical ways of reducing fuel consumption. The need for light components, able to fulfil technical and quality specifications, led to market growth for tooling that is able to mass produce parts using manufacturing processes such as high pressure die casting. Competitive pressures to reduce the lead time required for tooling-up has also increased dramatically. For this reason research into various methods, techniques and approaches to tool manufacture is being undertaken globally. This paper highlights the work undertaken at the CSIR on the issue of rapid die manufacturing through the application and evaluation of a rapid prototyping technique and coating technologies applied to die components of a high pressure casting die for the production of aluminium components. Criteria for determining suitability were developed against which the technique was evaluated that included time, cost and life-expectancy. Results of accelerated testing procedures to evaluate the die material produced by the rapid prototyping technique and surface coatings and treatments of die materials for their resistance to washout, erosion, heat checking and corrosion in a high pressure die casting environment, are presented. The outcomes of this research will be used for further development and application of specific techniques, design principles and criteria for this approach.
40

Comparative study of casting simulation softwares for future use during early stages of product development

Navarro Aranda, Monica January 2015 (has links)
Within industrial product development processes there is an increasing demand towards reliable predictions of the material behavior, which aims to promote a property driven development that can reduce the lead times. The implementation of simulation based product development with integrated casting simulation may enable the design engineers to gain an early understanding of the products with relation to castability, and orient the subsequent design refinement so as to achieve the desired mechanical properties. This work investigates the suitability of three commercial casting simulation softwares –MAGMA 5.2, NovaFlow & Solid 4.7.5 (NFS) and Click2Cast 3.0 (C2C)–, with respect to the needs of design engineers, such as prediction of shrinkage porosity and mechanical properties with relation to the design. Simplified solidification simulations suitable for this stage were thus performed for three high pressure die cast components with different geometrical constraints. The comparability between the solidification and cooling behaviour predicted by the three softwares was studied, and showed that a reasonably good agreement between predicted solidification times by MAGMA and NFS could be obtained, albeit not between predictions by MAGMA and C2C. Predictions by the three softwares of the hot spot/porosity areas showed to have a good agreement. The calculation times by each software were compared, and MAGMA was seen to have the best performance, yielding significantly shorter times than NFS and C2C. The results obtained were also compared to experimental investigations of porosity, microstructural coarseness, and mechanical properties. There was a good agreement between the predicted hot spot areas –i.e. areas in the geometry that solidify last– and the findings of porosities in the actual castings, meaning that solidification simulations might be able to provide important information for the prediction of most of shrinkage related porosity locations that are related to the casting geometry. However, the lack of a detailed knowledge at the design stage of the casting process limits the possibilities to predict all porosities. The predicted microstructure and mechanical properties by MAGMA non-ferrous were seen to have a good agreement in trend with the experimental data, albeit the predicted values showed large differences in magnitude with the experimental data. Although, the MAGMA non-ferrous module was not developed for HPDC components, it was interesting to study if it could be applied in this context. However, the models seem to need adoption to the HPDC process and alloys. In conclusion, with a limited knowledge of the manufacturing parameters, simplified solidification simulations may still be able to provide reasonably reliable and useful information during early development stages in order to optimise the design of castings.

Page generated in 0.0856 seconds