• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utformning av avgaskatalysator / Designing Exhaust Gas Catalysts

ASTORSDOTTER, JENNIFER, RICKNELL, JONAS, YU, FIONA, Forsgren, Axel January 2015 (has links)
Naturgas är ett alternativ till oljebaserade bränslen. Ur ett miljöperspektiv är naturgasen fördelaktig eftersom den vid förbränning ger mindre utsläpp av miljöfarliga ämnen än olja. I en diesel dual-fuel motor används diesel och naturgas som bränsle. Naturgas består till största delen av metan. För att oskadliggöra den del av metangasen som inte förbränns i motorn krävs en avgaskatalysator som kan bryta ned det relativt stabila metanet vid låga temperaturer. Målet med det här kandidatexamensarbetet är att tillverka och testa tre olika avgaskatalysatorer för nedbrytning av metan. De tre katalysatorer som valdes för tillverkning och testning var Pd/Al2O3, Pd/SnO2 och In2O3/SnO2 (ITO). Valen baserade sig på att katalysatorerna som tillverkades skulle vara aktiva för nedbrytning av metan vid låga temperaturer. ITO sågs som en extra intressant kandidat eftersom In är billigare än ädelmetallen Pd. Pd/Al2O3 tillverkades med en kommersiell support och impregnering av Pd genom ”incipient wetness” (IW). Pd/SnO2 tillverkades på samma sätt. ITO tillverkades genom ”forward co-precipitation”. En monolit testades för varje katalysator. Vid ungefär 315 °C kunde 10 % omsättning av metan detekteras för alla tre katalysatorer. Pd/Al2O3 var den katalysator vars aktivitet förbättrades som mest då temperaturen ökade ytterligare. Katalysatorerna testades bara en gång. För att statistiskt säkerställa resultaten behöver upprepade tester göras. Resultaten överensstämmer delvis med tidigare studier. Slutsatsen av arbetet är att alla tre katalysatorer fungerar och att ITO skulle kunna vara en billigare men i övrigt likvärdig avgaskatalysator för en diesel dual-fuel lean burn motor vid 315 °C. Fler tester måste dock göras för att ta reda på om ITO verkligen är ett mer fördelaktigt alternativ.
2

Advancing the Limits of Dual Fuel Combustion

Königsson, Fredrik January 2012 (has links)
There is a growing interest in alternative transport fuels. There are two underlying reasons for this interest; the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors the Diesel Dual Fuel, DDF, engine is an attractive concept. The primary fuel of the DDF engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste; commonly referred to as biomethane, can provide a reduction in greenhouse gases unmatched by any other fuel. The DDF engine is from a combustion point of view a hybrid between the diesel and the otto engine and it shares characteristics with both. This work identifies the main challenges of DDF operation and suggests methods to overcome them. Injector tip temperature and pre-ignitions have been found to limit performance in addition to the restrictions known from literature such as knock and emissions of NOx and HC. HC emissions are especially challenging at light load where throttling is required to promote flame propagation. For this reason it is desired to increase the lean limit in the light load range in order to reduce pumping losses and increase efficiency. It is shown that the best results in this area are achieved by using early diesel injection to achieve HCCI/RCCI combustion where combustion phasing is controlled by the ratio between diesel and methane. However, even without committing to HCCI/RCCI combustion and the difficult control issues associated with it, substantial gains are accomplished by splitting the diesel injection into two and allocating most of the diesel fuel to the early injection. HCCI/RCCI and PPCI combustion can be used with great effect to reduce the emissions of unburned hydrocarbons at light load. At high load, the challenges that need to be overcome are mostly related to heat. Injector tip temperatures need to be observed since the cooling effect of diesel flow through the nozzle is largely removed. Through investigation and modeling it is shown that the cooling effect of the diesel fuel occurs as the fuel resides injector between injections and not during the actual injection event. For this reason; fuel residing close to the tip absorbs more heat and as a result the dependence of tip temperature on diesel substitution rate is highly non-linear. The problem can be reduced greatly by improved cooling around the diesel injector. Knock and preignitions are limiting the performance of the engine and the behavior of each and how they are affected by gas quality needs to be determined. Based on experiences from this project where pure methane has been used as fuel; preignitions impose a stricter limit on engine operation than knock. / QC 20120626 / Diesel Dual Fuel

Page generated in 0.059 seconds