Spelling suggestions: "subject:"differentiable"" "subject:"ifferentiable""
41 |
Automatic Lens Design based on Differentiable Ray-tracingYang, Xinge 03 1900 (has links)
The lens design is a fundamental but challenging problem, while modern lens design processes still follow the classic aberration optimization theory and need preliminary designs and experienced optical engineers to control the optimization process constantly. In this thesis, we develop a differentiable ray-tracing model and apply it to automatic lens design. Our method can do ray-tracing and render images with high accuracy, with the power to use the back-propagated gradient to optimize optical parameters. Different from traditional optical design, we propose to use the rendered images as the training criteria. The rendering loss shows superior results in optimizing lenses while also making the task easier. To remove the requirements of preliminary design and constant operations in conventional lens design, we propose a curriculum learning method that starts from a small aperture and field-of-view(FoV), gradually increases the design difficulty, and dynamically adjusts attention regions of rendered images. The proposed curriculum strategies empower us to optimize complex lenses from flat surfaces automatically. Given an existing lens design and setting all surfaces flat, our method can entirely recover the original design. Even with only design targets, our method can automatically generate starting points with flat surfaces and optimize to get a design with superior optical performance. The proposed method is applied to both spheric and aspheric lenses, both camera and cellphone lenses, showing a robust ability to optimize different types of lenses. In addition, we overcome the memory problem in differentiable rendering by splitting the differentiable rendering model into two sub-processes, which allows us to work with megapixel sensors and downstream imaging processing algorithms.
|
42 |
Numerical Methods in Deep Learning and Computer VisionSong, Yue 23 April 2024 (has links)
Numerical methods, the collective name for numerical analysis and optimization techniques, have been widely used in the field of computer vision and deep learning. In this thesis, we investigate the algorithms of some numerical methods and their relevant applications in deep learning. These studied numerical techniques mainly include differentiable matrix power functions, differentiable eigendecomposition (ED), feasible orthogonal matrix constraints in optimization and latent semantics discovery, and physics-informed techniques for solving partial differential equations in disentangled and equivariant representation learning. We first propose two numerical solvers for the faster computation of matrix square root and its inverse. The proposed algorithms are demonstrated to have considerable speedup in practical computer vision tasks. Then we turn to resolve the main issues when integrating differentiable ED into deep learning -- backpropagation instability, slow decomposition for batched matrices, and ill-conditioned input throughout the training. Some approximation techniques are first leveraged to closely approximate the backward gradients while avoiding gradient explosion, which resolves the issue of backpropagation instability. To improve the computational efficiency of ED, we propose an efficient ED solver dedicated to small and medium batched matrices that are frequently encountered as input in deep learning. Some orthogonality techniques are also proposed to improve input conditioning. All of these techniques combine to mitigate the difficulty of applying differentiable ED in deep learning. In the last part of the thesis, we rethink some key concepts in disentangled representation learning. We first investigate the relation between disentanglement and orthogonality -- the generative models are enforced with different proposed orthogonality to show that the disentanglement performance is indeed improved. We also challenge the linear assumption of the latent traversal paths and propose to model the traversal process as dynamic spatiotemporal flows on the potential landscapes. Finally, we build probabilistic generative models of sequences that allow for novel understandings of equivariance and disentanglement. We expect our investigation could pave the way for more in-depth and impactful research at the intersection of numerical methods and deep learning.
|
43 |
Error in the invariant measure of numerical discretization schemes for canonical sampling of molecular dynamicsMatthews, Charles January 2013 (has links)
Molecular dynamics (MD) computations aim to simulate materials at the atomic level by approximating molecular interactions classically, relying on the Born-Oppenheimer approximation and semi-empirical potential energy functions as an alternative to solving the difficult time-dependent Schrodinger equation. An approximate solution is obtained by discretization in time, with an appropriate algorithm used to advance the state of the system between successive timesteps. Modern MD simulations simulate complex systems with as many as a trillion individual atoms in three spatial dimensions. Many applications use MD to compute ensemble averages of molecular systems at constant temperature. Langevin dynamics approximates the effects of weakly coupling an external energy reservoir to a system of interest, by adding the stochastic Ornstein-Uhlenbeck process to the system momenta, where the resulting trajectories are ergodic with respect to the canonical (Boltzmann-Gibbs) distribution. By solving the resulting stochastic differential equations (SDEs), we can compute trajectories that sample the accessible states of a system at a constant temperature by evolving the dynamics in time. The complexity of the classical potential energy function requires the use of efficient discretization schemes to evolve the dynamics. In this thesis we provide a systematic evaluation of splitting-based methods for the integration of Langevin dynamics. We focus on the weak properties of methods for confiurational sampling in MD, given as the accuracy of averages computed via numerical discretization. Our emphasis is on the application of discretization algorithms to high performance computing (HPC) simulations of a wide variety of phenomena, where configurational sampling is the goal. Our first contribution is to give a framework for the analysis of stochastic splitting methods in the spirit of backward error analysis, which provides, in certain cases, explicit formulae required to correct the errors in observed averages. A second contribution of this thesis is the investigation of the performance of schemes in the overdamped limit of Langevin dynamics (Brownian or Smoluchowski dynamics), showing the inconsistency of some numerical schemes in this limit. A new method is given that is second-order accurate (in law) but requires only one force evaluation per timestep. Finally we compare the performance of our derived schemes against those in common use in MD codes, by comparing the observed errors introduced by each algorithm when sampling a solvated alanine dipeptide molecule, based on our implementation of the schemes in state-of-the-art molecular simulation software. One scheme is found to give exceptional results for the computed averages of functions purely of position.
|
44 |
An Algorithmic Approach to The Lattice Structures of Attractors and Lyapunov functionsUnknown Date (has links)
Ban and Kalies [3] proposed an algorithmic approach to compute attractor-
repeller pairs and weak Lyapunov functions based on a combinatorial multivalued
mapping derived from an underlying dynamical system generated by a continuous
map. We propose a more e cient way of computing a Lyapunov function for a Morse
decomposition. This combined work with other authors, including Shaun Harker,
Arnoud Goulet, and Konstantin Mischaikow, implements a few techniques that makes
the process of nding a global Lyapunov function for Morse decomposition very e -
cient. One of the them is to utilize highly memory-e cient data structures: succinct
grid data structure and pointer grid data structures. Another technique is to utilize
Dijkstra algorithm and Manhattan distance to calculate a distance potential, which is
an essential step to compute a Lyapunov function. Finally, another major technique
in achieving a signi cant improvement in e ciency is the utilization of the lattice
structures of the attractors and attracting neighborhoods, as explained in [32]. The
lattice structures have made it possible to let us incorporate only the join-irreducible
attractor-repeller pairs in computing a Lyapunov function, rather than having to use
all possible attractor-repeller pairs as was originally done in [3]. The distributive lattice structures of attractors and repellers in a dynamical
system allow for general algebraic treatment of global gradient-like dynamics. The
separation of these algebraic structures from underlying topological structure is the
basis for the development of algorithms to manipulate those structures, [32, 31].
There has been much recent work on developing and implementing general compu-
tational algorithms for global dynamics which are capable of computing attracting
neighborhoods e ciently. We describe the lifting of sublattices of attractors, which
are computationally less accessible, to lattices of forward invariant sets and attract-
ing neighborhoods, which are computationally accessible. We provide necessary and
su cient conditions for such a lift to exist, in a general setting. We also provide
the algorithms to check whether such conditions are met or not and to construct the
lift when they met. We illustrate the algorithms with some examples. For this, we
have checked and veri ed these algorithms by implementing on some non-invertible
dynamical systems including a nonlinear Leslie model. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
|
45 |
Some new results on hyperbolic gauss curvature flows. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
Wo, Weifeng. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 99-102). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
46 |
Estudo de difusão caótica em um modelo de poço de potencial dependente do tempo /Graciano, Flávio Heleno. January 2018 (has links)
Orientador: Edson Denis Leonel / Banca: Juliano Antônio de Oliveira / Banca: Renê Orlando Medrado Torricos / Resumo: Neste trabalho consideramos o modelo do poço de potencial dependente do tempo e construimos de forma detalhada o mapeamento discreto bidimensional nas variáveis energia e fase que descreve a dinâmica do sistema. Mostramos que o espaço de fases é do tipo misto, contendo mares de caos, curvas invariantes e ilhas de estabilidade. Encontramos a matriz Jacobiana para o mapeamento assim como seu determinante, confirmando a propriedade de preservação de área. Estudamos a evolução no tempo da energia quadrática média e discutimos leis de escala para o comportamento dessa evolução. Por fim demos início à resolução da equação da difusão a fim de encontrarmos uma equação analitíca para energia quadrática média / Abstract: In this work we consider the model of the time-dependent potential well and we construct in detail the two-dimensional discrete mapping in the energy and phase variables that describes the dynamics of the system. We show that the phase space is of the mixed type, containing chaotic seas, invariant curves and stability islands. We obtain the Jacobian matrix for the mapping as well as its determinant, confirming the area preservation property. We study the evolution in time of the average squared energy and discuss scaling laws for the behavior of this evolution. Finally we started the resolution of the diffusion equation in order to find an analytical equation for mean quadratic energy / Mestre
|
47 |
Group invariant solutions for some curvature driven flows. / CUHK electronic theses & dissertations collectionJanuary 1999 (has links)
by Guan-xin Li. / "January 1999." / Thesis (Ph.D.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (p. 223-225). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
48 |
Lagrangian angles of foliation in R² under curve shortening flow.January 2011 (has links)
Ma, Man Shun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 75-76). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.6 / Chapter 2 --- Basic notions in Riemannian geometry --- p.10 / Chapter 2.1 --- Basic manifold theory --- p.11 / Chapter 2.2 --- "Connection, curvature" --- p.19 / Chapter 2.3 --- Submanifold theory --- p.29 / Chapter 3 --- Basic facts in symplectic and complex geometry --- p.33 / Chapter 3.1 --- "Symplectic manifolds, Lagrangian submanifolds" --- p.34 / Chapter 3.2 --- Kahler and Calabi-Yau manifolds --- p.39 / Chapter 3.3 --- Calibration --- p.49 / Chapter 4 --- Mean curvature flow --- p.52 / Chapter 4.1 --- Basic equations in Lagrangian immersions --- p.53 / Chapter 4.2 --- Evolution equation for --- p.57 / Chapter 4.3 --- Evolution equations for H and θ --- p.62 / Chapter 5 --- Lagrangian angle of a foliation --- p.67 / Chapter 5.1 --- "Proof of equation (5.1), (5.2)" --- p.68 / Chapter 5.2 --- Main theorem --- p.70 / Chapter 5.3 --- Examples of invariant solution --- p.73 / Bibliography --- p.75
|
49 |
On manifolds of nonpositive curvature.January 1997 (has links)
by Yiu Chun Chit. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 81-82). / Chapter 1 --- Introduction --- p.7 / Chapter 1.1 --- Riemannian Manifolds --- p.7 / Chapter 1.1.1 --- Completeness --- p.8 / Chapter 1.1.2 --- Curvature tensor --- p.9 / Chapter 1.1.3 --- Holonomy --- p.11 / Chapter 1.2 --- Simply-connected Manifold of Nonpositive Sectional Curvature --- p.11 / Chapter 1.2.1 --- Topological structure --- p.12 / Chapter 1.2.2 --- Basic geometric properties --- p.13 / Chapter 1.2.3 --- Examples of nonpositively curved manifold --- p.20 / Chapter 1.2.4 --- Convexity properties --- p.23 / Chapter 1.2.5 --- Points at infinity for M --- p.27 / Chapter 2 --- Symmetric Spaces --- p.36 / Chapter 2.1 --- Symmetric Spaces of Noncompact Type --- p.36 / Chapter 2.1.1 --- Symmetric diffeomorphisms --- p.36 / Chapter 2.1.2 --- Transvections in I(M) --- p.38 / Chapter 2.1.3 --- Symmetric spaces as coset manifolds G/K --- p.39 / Chapter 2.1.4 --- Metric on TpM and the adjoint representation of Lie group --- p.41 / Chapter 2.1.5 --- Curvature tensor of M --- p.43 / Chapter 2.1.6 --- Killing form and classification of symmetric spaces --- p.44 / Chapter 2.1.7 --- Holonomy of M at p --- p.44 / Chapter 2.1.8 --- Rank of a symmetric space M --- p.45 / Chapter 2.1.9 --- Regular and singular points at infinity --- p.46 / Chapter 2.2 --- "The Symmetric Space Mn = SL(n,R)/SO(n,R)" --- p.46 / Chapter 2.2.1 --- Metric on TIMn --- p.47 / Chapter 2.2.2 --- Geodesic and symmetries of Mn --- p.48 / Chapter 2.2.3 --- Curvature of Mn --- p.48 / Chapter 2.2.4 --- Rank and flats in Mn --- p.49 / Chapter 2.2.5 --- Holonomy of Mn at I --- p.49 / Chapter 2.2.6 --- Eigenvalue-flag pair for a point in Mn(∞ ) --- p.50 / Chapter 2.2.7 --- Action of I0(Mn) on Mn(∞ ) --- p.52 / Chapter 2.2.8 --- Flags in opposition --- p.53 / Chapter 2.2.9 --- Joining points at infinity --- p.53 / Chapter 3 --- Group Action --- p.56 / Chapter 3.1 --- Action of Isometries on M(oo) --- p.56 / Chapter 3.1.1 --- Fundamental group as a group of isometries --- p.56 / Chapter 3.1.2 --- Lattices --- p.58 / Chapter 3.1.3 --- Duality condition --- p.59 / Chapter 3.1.4 --- Geodesic flows --- p.61 / Chapter 3.2 --- Action of Geodesic Symmetries on M(oo) --- p.62 / Chapter 3.3 --- Rank --- p.66 / Chapter 3.3.1 --- Rank of a manifold of nonpositive curvature --- p.66 / Chapter 3.3.2 --- Rank of the fundamental group --- p.68 / Chapter 3.4 --- Rigidity Theorems of Locally Symmetric Spaces --- p.69
|
50 |
Stability theory and numerical analysis of non-autonomous dynamical systems.Stonier, D. J., mikewood@deakin.edu.au January 2003 (has links)
The development and use of cocycles for analysis of non-autonomous behaviour is a technique that has been known for several years. Initially developed as an extension to semi-group theory for studying rion-autonornous behaviour, it was extensively used in analysing random dynamical systems [2, 9, 10, 12].
Many of the results regarding asymptotic behaviour developed for random dynamical systems, including the concept of cocycle attractors were successfully transferred and reinterpreted for deterministic non-autonomous systems primarily by P. Kloeden and B. Schmalfuss [20, 21, 28, 29]. The theory concerning cocycle attractors was later developed in various contexts specific to particular classes of dynamical systems [6, 7, 13], although a comprehensive understanding of cocycle attractors (redefined as pullback attractors within this thesis) and their role in the stability of non-autonomous dynamical systems was still at this stage incomplete.
It was this purpose that motivated Chapters 1-3 to define and formalise the concept of stability within non-autonomous dynamical systems. The approach taken incorporates the elements of classical asymptotic theory, and refines the notion of pullback attraction with further development towards a study of pull-back stability arid pullback asymptotic stability. In a comprehensive manner, it clearly establishes both pullback and forward (classical) stability theory as fundamentally unique and essential components of non-autonomous stability. Many of the introductory theorems and examples highlight the key properties arid differences between pullback and forward stability. The theory also cohesively retains all the properties of classical asymptotic stability theory in an autonomous environment. These chapters are intended as a fundamental framework from which further research in the various fields of non-autonomous
dynamical systems may be extended.
A preliminary version of a Lyapunov-like theory that characterises pullback attraction is created as a tool for examining non-autonomous behaviour in Chapter 5. The nature of its usefulness however is at this stage restricted to the converse theorem of asymptotic stability.
Chapter 7 introduces the theory of Loci Dynamics. A transformation is made to an alternative dynamical system where forward asymptotic (classical asymptotic) behaviour characterises pullback attraction to a particular point in the original dynamical system. This has the advantage in that certain conventional techniques for a forward analysis may be applied.
The remainder of the thesis, Chapters 4, 6 and Section 7.3, investigates the effects of perturbations and discretisations on non-autonomous dynamical systems known to possess structures that exhibit some form of stability or attraction. Chapter 4 investigates autonomous systems with semi-group attractors, that have been non-autonomously perturbed, whilst Chapter 6 observes the effects of discretisation on non-autonomous dynamical systems that exhibit properties of forward asymptotic stability. Chapter 7 explores the same problem of discretisation, but for pullback asymptotically stable systems. The theory of Loci Dynamics is used to analyse the nature of the discretisation, but establishment of results directly analogous to those discovered in Chapter 6 is shown to be unachievable. Instead a case by case analysis is provided for specific classes of dynamical systems, for which the results generate a numerical approximation of the pullback attraction in the original continuous dynamical system.
The nature of the results regarding discretisation provide a non-autonomous extension to the work initiated by A. Stuart and J. Humphries [34, 35] for the numerical approximation of semi-group attractors within autonomous systems. . Of particular importance is the effect on the system's asymptotic behaviour over non-finite intervals of discretisation.
|
Page generated in 0.0904 seconds