• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 15
  • 14
  • 12
  • 10
  • 10
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Impact of constructivist instructional approach on grade 12 learners' understanding of stationary points in differential calculus

Omoniyi, Adebayo Akinyinka 02 1900 (has links)
With the realization that traditional instructional approach has not yielded satisfactory results, quasi-experimental and descriptive research designs were employed to investigate whether the application of constructivist instructional approach in the learning of stationary points in differential calculus by Grade 12 learners in South Africa would improve conceptual learning. Three Gauteng high schools of 204 Grade 12 learners constituted the research fields – one served as the control group while the other two represented the experimental group. Being a mixed-method research, quantitative data were gathered through pre-test and post-test while qualitative data were collected from classroom observations. Both inferential and descriptive statistical methods of data collection and analysis were used. The results obtained indicate that the experimental group demonstrated a better understanding of the concept of stationary points than the control group. / Mathematics Education / M. Sc. (Mathematics Education)
42

Material para o ensino do cálculo diferencial e integral: referências de Tall, Gueudet e Trouche

Almeida, Marcio Vieira de 27 June 2017 (has links)
Submitted by Filipe dos Santos (fsantos@pucsp.br) on 2017-08-02T14:32:30Z No. of bitstreams: 1 Marcio Vieira de Almeida.pdf: 5322268 bytes, checksum: 95a05019d55b263aef725a9ef6402f5e (MD5) / Made available in DSpace on 2017-08-02T14:32:30Z (GMT). No. of bitstreams: 1 Marcio Vieira de Almeida.pdf: 5322268 bytes, checksum: 95a05019d55b263aef725a9ef6402f5e (MD5) Previous issue date: 2017-07-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This thesis presents a material for the teaching of Differential and Integral Calculus, composed by seven activities, which were based on theoretical references of Mathematical Education. The concepts of function, continuity, differentiability, solution of a differential equation, integral and limit of sequences were approached in these activities. The intention was to defend that one of the ways to establish the narrowing of the relation of theory and practice in this area of investigation is done through the elaboration of materials for teaching with this goal. The concepts of generic organizer, cognitive root, and Three Worlds of Mathematics by Tall and collaborators and the idea of resource of Documental Genesis of Gueudet and Trouche were used. The use of the computer and the construction of tools on GeoGebra were productive procedures to obtain a material with the planned qualities. The research, which had as a result the material for teaching, followed the methodological orientation of a type of fundamental research, in which the goal is the filling of gaps in knowledge related to the solution of problems through practice. An explanatory, theoretical posture was adopted, the construction of considerations with rigor and logical coherence to validate the obtained results. In the scope of theoretic-methodological references seven activities were elaborated for the teaching of Calculus organized in three components which, compose a resource (mathematics, material and didactics) in the conception of Documental Genesis, incorporating cognitivist ideas of Tall and his associates. Using the components (mathematics, material and didactics) allows that the material may configure itself as an element of the set of resources, according to the Documental Genesis, which a teacher of Calculus can use for the development of a class. As a result it is possible to demonstrate that the way of elaboration proposed for a material for teaching, in which theories of Mathematical Education are elaborated and adequate software is used, may be a powerful way to favor the integration of theory and practice, pursued and necessary for Mathematic Education, besides contributing with learning / Esta tese apresenta um material para o ensino de Cálculo Diferencial e Integral composto por sete atividades que foram embasadas em referenciais teóricos da Educação Matemática. Nelas, foram abordados os conceitos de função, continuidade, diferenciabilidade, solução de uma equação diferencial, integral e limite de sequências. Pretendeu-se defender que uma das formas de se estabelecer o estreitamento da relação teoria e prática nessa área de investigação é feita por meio de elaboração de materiais para o ensino com essa finalidade. Foram utilizadas as noções de organizador genérico, raiz cognitiva e Três Mundos da Matemática de Tall e colaboradores, e a noção de recurso da Gênese Documental de Gueudet e Trouche. O uso do computador e a construção de ferramentas no GeoGebra foram procedimentos férteis para se obter um material com as competências planejadas. A pesquisa, que teve por resultado o material para o ensino, seguiu orientação metodológica de uma do tipo pesquisa fundamental, na qual se objetiva o preenchimento de lacunas no conhecimento relativo à solução de problemas advindos da prática. Adotou-se uma postura teórica exploratória, a da construção de argumentos com rigor e coerência lógica para validar os resultados obtidos. Nesse âmbito de referenciais teórico- metodológicos, foram elaboradas sete atividades para o ensino de Cálculo, organizadas em três componentes, as quais compõem um recurso (matemática, material e didática) na concepção da Gênese Documental, incorporando noções cognitivistas de Tall e seus associados. A utilização das componentes (matemática, material e didática) possibilita que o material possa se configurar em um elemento do conjunto de recursos, conforme a Gênese Documental, de um professor de Cálculo, para o desenvolvimento de uma aula. Como resultado pode-se demonstrar que o modo de elaboração proposto para um material para o ensino, em que se incorporam teorias da Educação Matemática e se utiliza um software adequado, pode ser um meio potente para favorecer a integração teoria e prática, almejada e necessária pela Educação Matemática, além de contribuir com a aprendizagem
43

Deformation groupoids and applications / Groupoïdes de déformations et applications

Mohsen, Omar 04 October 2018 (has links)
Cette thèse est consacrée à l’étude de trois questions différentes concernant les groupoïdes de Lie et leurs applications. Le premier chapitre présente quelques préliminaires sur les groupoïdes de Lie. Dans le chapitre 2, on exprime la déformation de Witten à l’aide d’une déformation au cone normal et la théorie de C∗-modules ce qui nous permet de retrouver les inégalités de Morse. Notre méthode se généralise au cas des feuilletages. Dans le chapitre 3, on donne une construction simple du groupoïde de déformation construit par Choi-Pönge et Van Erp-Yuncken. Rappelons que celui-ci décrit le calcule pseudo-différentiel inhomogène grâce au travail de Debord-Skandalis et Van Erp- Yuncken. Notre construction montre que le groupoïde de déformation est en fait une déformation au cone normal classique itérée. Dans le chapitre 4, suivant le travail de Antonini, Azzali et Skandalis, on construit un élément en KK-théorie équivariante qui permet d’exprimer directement les invariants de Chern-Simons en K-théorie. Dans l’appendice on donne quelques rappels sur la KK-théorie équivariante et la KK-théorie réelle introduite par Antonini, Azzali et Skandalis. / This thesis is devoted to the study of three different questions concerning Lie groupoids and their applications. The first chapter presents some preliminaries on Lie groupoids. In Chapter 2, Witten’s deformation is expressed using deformation to the normal cone construction and the theory of C∗-modules, which allows us to reprove the Morse inequalities. Our method is generalised to the case of foliations. In Chapter 3, we give a simple construction of the deformation groupoid built by Choi-Pönge and Van Erp-Yuncken. Recall that this groupoid describes the inhomogeneous pseudo-differential calculus thanks to the work of Debord-Skandalis and Van Erp-Yuncken. Our construction shows that the deformation groupoid is actually an iterated classical deformation to the normal cone. In Chapter 4, following the work of Antonini, Azzali and Skandalis, we construct an element in equivariant KK-theory that allows us to express the Chern-Simons invariants directly in K-theory. In the appendix we give some reminders about the equivariant KK-theory and the real KK-theory introduced by Antonini, Azzali and Skandalis.
44

Une approche intrinsèque des foncteurs de Weil / An intrinsic approach of Weil functors

Souvay, Arnaud 23 November 2012 (has links)
Nous construisons un foncteur de la catégorie des variétés sur un corps ou un anneau topologique K, de caractéristique arbitraire, dans la catégorie des variétés sur A, où A est une algèbre de Weil, c'est-à-dire une K-algèbre de la forme A = K + N, où N est un idéal nilpotent. Le foncteur correspondant, noté T^A, et appelé foncteur de Weil, peut être interprété comme un foncteur d'extension scalaire de K à A. Il est construit à l'aide des polynômes de Taylor, dont nous donnons une définition en caractéristique quelconque. Ce résultat généralise à la fois des résultats connus pour les variétés réelles ordinaires, et les résultats obtenus dans le cas des foncteurs tangents itérés et dans le cas des anneaux de jets (A = K[X]/(X^{k+1})). Nous montrons que pour toute variété M, T^A M possède une structure de fibré polynomial sur M, et nous considérons certains aspects algébriques des foncteurs de Weil, notamment ceux liés à l'action du « groupe de Galois » Aut_K(A). Nous étudions les connexions, qui sont un outil important d'analyse des fibrés, dans deux contextes différents : d'une part sur les fibrés T^A M, et d?autre part sur des fibrés généraux sur M, en suivant l'approche d'Ehresmann. Les opérateurs de courbure d'une connexion sont induits par l'action du groupe de Galois Aut_K(A) et ils forment une obstruction à l'« intégrabilité » d'une connexion K-lisse en une connexion A-lisse / We construct a functor from the category of manifolds over a general topological base field or ring K, of arbitrary characteristic, to the category of manifolds over A, where A is a so-called Weil algebra, i.e. a K-algebra of the form A = K + N, where N is a nilpotent ideal. The corresponding functor, denoted by T^A, and called a Weil functor, can be interpreted as a functor of scalar extension from K to A. It is constructed by using Taylor polynomials, which we define in arbitrary characteristic. This result generalizes simultaneously results known for ordinary, real manifolds, and results for iterated tangent functors and for jet rings (A = K[X]/(X^{k+1})). We show that for any manifold M, T^A M is a polynomial bundle over M, and we investigate some algebraic aspects of the Weil functors, in particular those related to the action of the "Galois group" Aut_K(A). We study connections, which are an important tool for the analysis of fiber bundles, in two different contexts : connections on the Weil bundles T^A M, and connections on general bundles over M, following Ehresmann's approach. The curvature operators are induced by the action of the Galois group Aut_K(A) and they form an obstruction to the "integrability" of a K-smooth connection to an A-smooth one

Page generated in 0.0658 seconds