• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 38
  • 16
  • 15
  • 13
  • 12
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 222
  • 222
  • 222
  • 49
  • 48
  • 37
  • 36
  • 36
  • 35
  • 35
  • 33
  • 29
  • 27
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Prediction of Specific Heat Capacity of Food Lipids and Foods

Zhu, Xiaoyi 20 October 2015 (has links)
No description available.
52

Evaluation of Water Sorption and Thermal Properties of Galacto-oligosaccharides, and Application in Glassy Confections

Lans, Alexa Michelle 12 September 2016 (has links)
No description available.
53

Thermodynamic studies on iron-sulfur cluster assembly proteins

Ding, Shu 21 October 2011 (has links)
No description available.
54

Thermodynamic Study of Acylglycerols Solidification for Predicting Cold Flow Properties of Biodiesel / バイオディーゼルの低温流動性に関わるアシルグリセロール凝固挙動の熱力学的研究

LATIFA, SENIORITA 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第23535号 / エネ博第426号 / 新制||エネ||81(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻 / (主査)教授 河本 晴雄, 教授 石原 慶一, 教授 川那辺 洋 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
55

Effect of Cellulose Nanocrystals on the Rheology, Curing Behavior, and Fracture Performance of Phenol-Formaldehyde Resol Resin

Hong, Jung Ki 10 January 2010 (has links)
The purpose of this research was to determine the effects of cellulose nanocrystals (CNCs), as potential additives, on the properties and performance of phenol–formaldehyde (PF) adhesive resin. The steady-state viscosity of a commercial PF resol resin and three CNC–resin mixtures, containing 1–3 wt % CNCs, based on solids content, was measured with a rheometer as a function of shear rate. The viscosity of the PF resin itself was independent of shear rate. The viscosity–shear rate curves of the CNC–resin mixtures showed two regions, a shear thinning region at lower shear rates and a Newtonian region at higher shear rates. The low-shear-rate viscosity of the resin was greatly increased by the CNCs. The structure of the CNC–resin mixtures under quiescent conditions was analyzed by polarized light microscopy. The mixtures contained CNC aggregates, which could be disrupted by ultrasound treatment. The curing progressions of the resin and CNC–resin mixtures were analyzed by non-isothermal differential scanning calorimetry (DSC). The DSC curves showed two exotherms followed by an endotherm. The energy of activation for the first exotherm was reduced by the CNCs whereas the energy of activation for the second exotherm was not affected by the CNCs. Increasing CNC contents caused higher degrees of reaction conversion during the first curing stage and a greater loss of sample mass, attributed to formaldehyde release during resin cure. For analysis of the mechanical properties during and after cure, sandwich-type test specimens were prepared from southern yellow pine strips and the resin and CNC–resin mixtures. The mechanical properties of the test specimens were measured as a function of time and temperature by dynamic mechanical analysis (DMA). The time to incipient storage modulus increase decreased and the rate of relative storage modulus increase increased with increasing CNC content. The ultimate sample stiffness increased with increasing CNC content for CNC contents between 0 and 2 wt %, which was attributed to mechanical reinforcement of the resin by the CNCs. At a CNC content of 3 wt %, the ultimate sample stiffness was lower than at a CNC content of 2 wt % and the second tan δ maximum occurred earlier in the experiment, indicating an earlier onset of vitrification. The lower ultimate sample stiffness was attributed to premature quenching of the curing reactions through CNC-induced depression of the vitrification point. For analysis of the fracture performance, double cantilever beam test specimens were prepared from southern yellow pine beams and the resin and CNC–resin mixtures, using different hot-pressing times. Fracture energies were measured by mode I cleavage tests. Bondline characteristics were analyzed by light microscopy. At a hot-pressing time of 10 min, the fracture energy decreased with increasing CNC content, whereas it stayed constant for CNC contents between 1 and 3 wt % at a hot-pressing time of 8 min. The bondlines of resin mixtures containing CNCs exhibited voids, whereas those of the pure resin did not. CNCs had both benefitial and detrimental effects on the properties and performace of PF resin. / Master of Science
56

Interaction of surfactants (edge activators) and skin penetration enhancers with liposomes.

Barry, Brian W., El-Maghraby, G.M., Williams, G.M. January 2004 (has links)
No / Incorporating edge activators (surfactants) into liposomes was shown previously to improve estradiol vesicular skin delivery; this phenomenon was concentration dependent with low or high concentrations being less effective. Replacing surfactants with limonene produced similar behaviour, but oleic acid effects were linear with concentration up to 16% (w/w), beyond which it was incompatible with the phospholipid. This present study thus employed high sensitivity differential scanning calorimetry to probe interactions of additives with dipalmitoylphosphatidylcholine (DPPC) membranes to explain such results. Cholesterol was included as an example of a membrane stabiliser that removed the DPPC pre-transition and produced vesicles with a higher transition temperature (Tm). Surfactants also removed the lipid pre-transition but reduced Tm and co-operativity of the main peak. At higher concentrations, surfactants also formed new species, possibly mixed micelles with a lower Tm. The formation of mixed micelles may explain reduced skin delivery from liposomes containing high concentrations of surfactants. Limonene did not remove the pre-transition but reduced Tm and co-operativity of the main peak, apparently forming new species at high concentrations, again correlating with vesicular delivery of estradiol. Oleic acid obliterated the pre-transition. The Tm and the co-operativity of the main peak were reduced with oleic acid concentrations up to 33.2 mol%, above which there was no further change. At higher concentrations, phase separation was evident, confirming previous skin transport findings.
57

Mapping the solid-state properties of crystalline lysozyme during pharmaceutical unit-operations

Mohammad, Mohammad A., Grimsey, Ian M., Forbes, Robert T. 13 May 2015 (has links)
No / Bulk crystallisation of protein therapeutic molecules towards their controlled drug delivery is of interest to the biopharmaceutical industry. The complexity of biotherapeutic molecules is likely to lead to complex material properties of crystals in the solid state and to complex transitions. This complexity is explored using batch crystallised lysozyme as a model. The effects of drying and milling on the solid-state transformations of lysozyme crystals were monitored using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), FT-Raman, and enzymatic assay. XRPD was used to characterise crystallinity and these data supported those of crystalline lysozyme which gave a distinctive DSC thermogram. The apparent denaturation temperature (Tm) of the amorphous lysozyme was ∼201 °C, while the Tm of the crystalline form was ∼187 °C. Raman spectra supported a more α-helix rich structure of crystalline lysozyme. This structure is consistent with reduced cooperative unit sizes compared to the amorphous lysozyme and is consistent with a reduction in the Tm of the crystalline form. Evidence was obtained that milling also induced denaturation in the solid-state, with the denatured lysozyme showing no thermal transition. The denaturation of the crystalline lysozyme occurred mainly through its amorphous form. Interestingly, the mechanical denaturation of lysozyme did not affect its biological activity on dissolution. Lysozyme crystals on drying did not become amorphous, while milling-time played a crucial role in the crystalline-amorphous-denatured transformations of lysozyme crystals. DSC is shown to be a key tool to monitor quantitatively these transformations.
58

Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

Ali, H.R.H., Edwards, Howell G.M., Hargreaves, Michael D., Munshi, Tasnim, Scowen, Ian J., Telford, Richard 15 October 2019 (has links)
No / Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting β-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488–1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectro-scopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.
59

Investigations On Topological Thresholds In Metal Doped Ternary Telluride Glasses

Manikandan, N 08 1900 (has links)
The ability to tune the properties over a wide range of values by changing the additives, composition, etc., has made chalcogenide glassy semiconductors, most interesting from both fundamental physics as well as technology point of view. In particular, the occurrence of the two network topological thresholds namely the Rigidity Percolation Threshold (RPT) and the Chemical Threshold (CT) and their influence on various properties of chalcogenide glasses have been of immense interest during the last three decades. The Rigidity Percolation Threshold (also known as the Stiffness Threshold or Mechanical Threshold) corresponds to the composition at which the material transforms from a floppy polymeric glass to a rigid amorphous solid, whereas at Chemical Threshold the sample tends towards an ordered state. Though the rigidity percolation has been considered for long to occur at a critical threshold defined by the constraint’s theory, the recent theoretical and experimental investigations have found the RPT to occur over a range of compositions. In systems exhibiting an extended rigidity percolation, two distinct transitions namely from a floppy to an isostatically rigid phase and from an isostatically rigid to a stressed rigid phase are seen. In the category of chalcogenide glasses, tellurides have been found to exhibit interesting properties including the phenomenon of electrical switching which finds applications in Phase Change Memories (PCM). Studies on various thermal, electrical and photoelectrical properties of glassy tellurides help us in identifying suitable materials for different technological applications. This thesis deals with Differential Scanning Calorimetric (DSC) & Temperature Modulated Alternating Differential Scanning Calorimetric (ADSC) studies, electrical switching investigations, photoconductivity & photothermal measurements on certain metal doped telluride glasses. The composition dependence of properties such as glass transition & crystallization temperatures, switching voltage, thermal diffusivity, photosensitivity, etc., have been analyzed to obtain information about topological thresholds, thermally reversing window, etc. The first chapter of thesis provides an overview of properties of amorphous semiconductors, in particular chalcogenide glasses. The local & defect structure, the electronic band structure & electrical properties, electrical switching behavior, etc., are discussed in detail. The theoretical aspects related to the experiments undertaken in this thesis work have also been described. The instrumentation used for various experiments conducted to measure thermal, electrical, photoelectrical and photothermal properties have been discussed in chapter two. The chapter three deals with the photocurrent measurements on As40Te60-xInx (7.5 ≤ x ≤ 16.5) glasses. In these samples, it has been found that the photocurrent increases with illumination, which is understood on the basis of the large dielectric constant and also due to the presence of a large number of positively charged defect states. Further, the composition dependence of the conductivity activation energy and the photosensitivity exhibit a maximum at x = 12.5 (<r> = 2.65) and a minimum at x = 15.0 (<r> = 2.70) which has been identified to be the Rigidity Percolation Threshold (RPT) and the Chemical Threshold (CT) respectively. The results of electrical switching, DSC and Photothermal Deflection (PTD) studies on As20Te80-xGax (7.5 ≤ x ≤ 18.5) glasses, undertaken to elucidate the network topological thresholds, are described in chapter four. It has been found that all the As20Te80-xGax glasses studied exhibit memory type electrical switching. The switching voltage (VT) of these glasses increases monotonically with x, in the composition range 7.5 ≤ x ≤ 15.0. The increase in VT with gallium addition leads to a local maximum at x = 15.0 and VT decreases with x thereafter, reaching a distinct minimum at x = 17.5. Based on the variation with composition of the electrical switching voltages, the composition x = 15.0 and x = 17.5 have been identified to be the rigidity percolation and chemical thresholds of the As20Te80-xGax glassy system respectively. Further, the DSC studies indicate that As20Te80-xGax glasses exhibit a single glass transition (Tg) and two crystallization reactions (Tc1 & Tc2) upon heating. There is no appreciable change in Tg of As20Te80-xGax glasses with the addition of upto about10 atom% of Ga, whereas a continuous increase is seen in the crystallization temperature (Tc1). It is interesting to note that both Tg and Tc1 exhibit a maximum at x = 15.0 and a minimum at x = 17.5, the compositions identified to be the RPT and CT respectively by the switching experiments. The composition dependence of thermal diffusivity estimated from the PTD signal, indicate the occurrence of an extended stiffness transition in As20Te80-xGax glasses, with the compositions x = 9.0 and x = 15.0 being the onset and the completion of an extended rigidity percolation. A maximum and a minimum are seen in the thermal diffusivity respectively at these compositions. Further, a second maximum is seen in the thermal diffusivity of As20Te80-xGax glasses, the Chemical Threshold (CT) of the glassy system. The fifth chapter of the thesis describes the ADSC, electrical switching and photocurrent measurements on Ge15Te85-xInx (1 ≤ x ≤ 11) glasses. It is found there is not much change in the Tg of Ge15Te85-xInx glasses in the composition range 1 ≤ x ≤ 3. An increase is seen in Tg beyond x = 3, which continues until x = 11. Further, the composition dependence of non-reversing enthalpy shows the presence of a thermally reversing window in the compositions range x = 3 and x = 7. Electrical switching studies indicate that Ge15Te85-xInx glasses exhibit threshold type of switching at input currents below 2 mA. It is observed that switching voltages decrease initially with indium addition, exhibiting a minimum at x = 3, the onset of the extended rigidity percolation as revealed by ADSC. An increase is seen in VT above x = 3, which proceeds till x = 8, with a change in slope (lower to higher) seen around 7 atom% of indium which corresponds to the completion of the stiffness transition. The reversal in trend exhibited in the variation of VT at x = 8, leads to a well defined minimum around x = 9, the chemical threshold of the Ge15Te85-xInx glassy system. Photocurrent measurements indicate that there is no photodegradation in Ge15Te85-xInx glasses with x < 3, whereas samples with x ≥ 3 show photodegradation behavior. The composition dependent variation in the glass transition temperature has been attributed for this behavior. Further, the composition dependence of photo sensitivity has been found to show the signatures of the extended rigidity percolation and the chemical threshold in Ge15Te85-xInx glasses. The last chapter of thesis (chapter six) summarizes the results obtained and also the scope of future work to be undertaken.
60

Aggregation mechanisms of proteins in liquid formulations / Aggregationsmekanismer av proteiner i vätskeformuleringar

Hamrin, Amanda January 2022 (has links)
Biologiska läkemedel har under det senaste århundradet utökats, och under de senaste 25 åren så har proportionen av godkända biologiska läkemedel har ökat för behandlingen av sjukdomar, vaccin, och diagnostik. Det finns flera olika mekanismer för protein aggregering, och en av dessa är seeding, vilket innebär aggregering inducerat av tillsatta aggregat eller förekomsten av strukturförändringar i proteinet. I detta examensarbete har två terapeutiska proteiner, Somatropin och en monoklonal antikropp, studerats i form av aggregering. Denna studie har utförts genom att värma en del av proteinlösningen för att bilda aggregat och strukturförändrat protein, och sedan blanda detta med nativt protein till olika volymprocent. Dessa lösningar förvarades i olika temperaturer, 4°C, RT och 40°C för att undersöka temperaturberoendet. Med Dynamic Light Scattering (DLS) mättes storleksfördelningen och medelstorleken på proteinet, vilket visade att de seedade proverna ökade i medelstorlek med tiden. Detta indikerar att seedingen inducerade aggregering med tiden. / Biological pharmaceuticals have expanded their use over the last decade, and during the recent 25 years, the proportion of approved biologics has increased for the treatment of diseases, vaccines, and diagnostics. There are several aggregation mechanisms, and one is seeding, i.e., aggregation induced by pre-formed aggregates or the presence of conformational changed proteins. In this master thesis, two therapeutic proteins, Somatropin and one monoclonal antibody have been studied in terms of aggregation. The study has been performed by heating a part of a protein solution to induce aggregation and mixing this with native protein in different volume percentages. These were stored in different temperatures, 4°C, RT, and 40°C, to investigate the temperature dependence. With Dynamic light scattering (DLS), the size distribution and the average-sized particles were measured. This showed that there was a growth of average size in the seeded samples with time. This indicates that the seeding induced aggregation with time.

Page generated in 0.1333 seconds