• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lignin based adhesives for particleboard production

Özmen, Nilgül January 2000 (has links)
The purpose of this study was to utilise lignin as a partial substitute for phenol in PF resins. To achieve this, initially brown rot lignin was produced by a bioconversion technique. During the course of the study, it became clear that the production of brown rot lignin had a limited success. Since brown rot lignin could not be obtained in sufficient quantity and purity by a bioconversion method, other alternative lignin production methods, as well as commercially available lignin, were chosen; namely production of lignin from black liquor and Alcell® (organosolv) lignin. Before performing production of resin formulations, the lignin sources were characterised in terms of reactivity and physical properties of lignins. Both lignins had a similar reactivity, but organosolv lignin was found to be more pure, with a low ash content. Since isolation of lignin from black liquor in laboratory conditions is more complex and requires more time, it was decided to use organosolv lignin for subsequent production of lignin-based reSIns. The lignin was introduced to the resin in two different ways. The first method was the replacing of a certain percentage of phenol with lignin (as supplied) directly into resins. In the second method, lignin was modified prior to resin manufacture by phenolation. Different degrees of phenol substitution (from 5% to 60%) were tried for the production of lignin-based resins. Bond qualities of lignin-phenol-formaldehyde (LPF) , phenolated-ligninformaldehyde, commercial phenol-formaldehyde (PF _com) and laboratory made phenol-formaldehyde (PF _made) resins were assessed by using an Automatic Bonding Evaluation System (ABES), prior to production of particleboards, in order to eliminate some of the poor quality resins. The effect of press temperature and time on bond strength appeared to be highly significant, as the lignin substitution levels increased. Up to 30% phenol substitution was achieved without sacrificing bond strength. The bond strength values of phenolated-lignin-formaldehyde resins were similar to commercial phenol-formaldehyde and laboratory made phenolformaldehyde resins, but better than the LPF resins. It was apparent that resins containing a high level of lignin substitution gave the poorest bond strength values. From these results, some of the resins were eliminated, prior to particleboard production. In order to evaluate the quality of lignin-based resins, particleboards were produced and mechanical and physical tests performed. Effect of press platen temperature (140°C, 160°C, 180°C) and press cycle time (5 min, 8 min, IS min) on the mechanical properties of particleboard, produced by using lignin-based resins, were investigated. It was found that particleboards bonded with up to 30% lignin content resins gave similar mechanical and physical properties to commercial phenolformaldehyde resin, as long as a sufficient heating regime and time were applied.
2

Novel Water Soluble Polymers as Flocculants

Xiao, Huining 12 1900 (has links)
<p> High molecular weight poly(ethylene oxide) (PEO) is used in conjunction with a cofactor such as phenol formaldehyde resin (PFR) as flocculants for newsprint manufacture. The objectives of the work described in this thesis were to prepare flocculants superior to PEO and to determine the flocculation mechanism. A series of novel comb copolymers consisting of a polyacrylamide backbone with short pendant poly(ethylene glycol) (PEG) chains was prepared and characterized. Additionally, polymerization conversion curves and reactivity ratios were measured. An interesting finding was that the reactivity of the macromonomer in free radical copolymerization decreased with PEG chain length. </p> <p> Flocculation results with both model latex dispersions and commercial wood pulp suspensions showed that copolymer chain length was the most important variable ; molecular weights greater than 3 million were required for good flocculation. On the other hand, the PEG pendant chains could be as short as 9 ether repeat units. Also, only 1 to 2 PEG chains for every 100 acrylamide backbone moieties were required. </p> <p> No published flocculation mechanisms could predict all the behaviors of the PEO or copolymer system. A new mechanism called complex bridging was proposed. According to this mechanism PEO or copolymer chains aggregate in the presence of cofactor to form colloidally dispersed polymer complex which heteroflocculates with the colloidal particles. </p> <p> Given in this work is the first explanation of the requirement for extremely high PEO or copolymer molecular weights for flocculation. It is proposed that polymer chains with molecular weights less than 106 collapse in the presence of PFR to an inactive precipitate before flocculation can occur whereas complexes based on very high molecular weight PEO collapse slowly enough to permit flocculation. </p> <p> Published mechanistic studies are hindered by the fact that PFR has poorly defined structures. It is shown for the first time in this work that welldefined, linear, poly(p-vinyl phenol) (PVPh) is an effective cofactor. </p> / Thesis / Doctor of Philosophy (PhD)
3

Effect of Cellulose Nanocrystals on the Rheology, Curing Behavior, and Fracture Performance of Phenol-Formaldehyde Resol Resin

Hong, Jung Ki 10 January 2010 (has links)
The purpose of this research was to determine the effects of cellulose nanocrystals (CNCs), as potential additives, on the properties and performance of phenol–formaldehyde (PF) adhesive resin. The steady-state viscosity of a commercial PF resol resin and three CNC–resin mixtures, containing 1–3 wt % CNCs, based on solids content, was measured with a rheometer as a function of shear rate. The viscosity of the PF resin itself was independent of shear rate. The viscosity–shear rate curves of the CNC–resin mixtures showed two regions, a shear thinning region at lower shear rates and a Newtonian region at higher shear rates. The low-shear-rate viscosity of the resin was greatly increased by the CNCs. The structure of the CNC–resin mixtures under quiescent conditions was analyzed by polarized light microscopy. The mixtures contained CNC aggregates, which could be disrupted by ultrasound treatment. The curing progressions of the resin and CNC–resin mixtures were analyzed by non-isothermal differential scanning calorimetry (DSC). The DSC curves showed two exotherms followed by an endotherm. The energy of activation for the first exotherm was reduced by the CNCs whereas the energy of activation for the second exotherm was not affected by the CNCs. Increasing CNC contents caused higher degrees of reaction conversion during the first curing stage and a greater loss of sample mass, attributed to formaldehyde release during resin cure. For analysis of the mechanical properties during and after cure, sandwich-type test specimens were prepared from southern yellow pine strips and the resin and CNC–resin mixtures. The mechanical properties of the test specimens were measured as a function of time and temperature by dynamic mechanical analysis (DMA). The time to incipient storage modulus increase decreased and the rate of relative storage modulus increase increased with increasing CNC content. The ultimate sample stiffness increased with increasing CNC content for CNC contents between 0 and 2 wt %, which was attributed to mechanical reinforcement of the resin by the CNCs. At a CNC content of 3 wt %, the ultimate sample stiffness was lower than at a CNC content of 2 wt % and the second tan δ maximum occurred earlier in the experiment, indicating an earlier onset of vitrification. The lower ultimate sample stiffness was attributed to premature quenching of the curing reactions through CNC-induced depression of the vitrification point. For analysis of the fracture performance, double cantilever beam test specimens were prepared from southern yellow pine beams and the resin and CNC–resin mixtures, using different hot-pressing times. Fracture energies were measured by mode I cleavage tests. Bondline characteristics were analyzed by light microscopy. At a hot-pressing time of 10 min, the fracture energy decreased with increasing CNC content, whereas it stayed constant for CNC contents between 1 and 3 wt % at a hot-pressing time of 8 min. The bondlines of resin mixtures containing CNCs exhibited voids, whereas those of the pure resin did not. CNCs had both benefitial and detrimental effects on the properties and performace of PF resin. / Master of Science
4

Chování lubrikační emulze a pryskyřice ve výrobě minerální plsti / Mineral wool and binding agent interaction and behavior study

Fiala, Michal January 2010 (has links)
Diploma's thesis describes resolution of cause technological problems in mineral wool manufacturig in company Saint-Gobain Orsil. Main attention is paid to thermal and volatile process in mineral wool from filtration chamber and common commercial sales. Samples of mineral wool were characterizated by thermal analysis (simultaneous TG-DTA), effluent gas analysis (EGA), infrared spectroscopy (FT-IR), electron microscopy (SEM) and X-ray diffraction (XRD). Thermal analysis experiments was used to check thermal volatile processes. Technological problem of burning is linked with rise of isocyanic acid.
5

Rubber Toughening Of Phenolic Resin By Using Nitrile Rubber And Amino Silane

Cagatay, Onur 01 July 2005 (has links) (PDF)
The aim of this study was to investigate rubber toughening of resol type phenol-formaldehyde resin. For this purpose, phenolic resin was first modified by only acrylonitrile butadiene rubber, and then by using nitrile rubber together with 3-aminopropyltriethoxysilane. Test specimens were prepared by mixing and casting of liquid phenolic resin in three groups. In the first one, neat phenolic resin specimens were produced. In the second group, phenolic resin was modified with 0.5, 1, 2, and 3 wt.% nitrile rubber, while in the last group modification was carried out by using 0.5 wt.% nitrile rubber together with 1, 2, and 4wt.% amino silane (with respect to nitrile rubber). All specimens were heat cured in the oven. In order to observe behaviors of the specimens, Three-Point Bending, Charpy Impact, Plane-Strain Fracture Toughness, and Dynamic Mechanical Analysis tests were conducted according to the related ISO standards for all specimens groups. Scanning Electron Microscopy was also used for the fractographic analysis of some samples. It can be concluded that, although there were problems in mixing and casting of liquid resol type phenolic resin, its toughness could be improved by using nitrile rubber and amino silane. Modification by using nitrile rubber and amino silane together was much more effective than by using only nitrile rubber. In this synergistic case for instance, Charpy impact strength and fracture toughness values of the neat phenolic specimens were increased 63% and 50%, respectively. SEM studies indicated that the main rubber toughening mechanism was shear yielding observed as deformation lines especially initiated at the domains of nitrile rubber and amino silane.
6

Novas estruturas fotônicas: I – Auto-organização de estruturas 1D de Te; II – Biopolímeros e plásticos reutilizados multifuncionais / New photonic structures: I – Self assembly of 1D Te structures; II – Multifunctional biopolymers and reused plastics

Silva, Robson Rosa da [UNESP] 23 May 2016 (has links)
Submitted by ROBSON ROSA DA SILVA (robsilva31@gmail.com) on 2016-07-04T18:50:31Z No. of bitstreams: 1 Silva_2016_New photonic structures_Self assembly of 1D Te structures_Multifunctional biopolymers and reused plastics.pdf: 40718449 bytes, checksum: 9c299b328a4a54c169de6647b0225f34 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-07-07T17:57:07Z (GMT) No. of bitstreams: 1 silva_rr_dr_araiq_par.pdf: 1063262 bytes, checksum: cc72dc79773da734cac767490756f56e (MD5) / Made available in DSpace on 2016-07-07T17:57:07Z (GMT). No. of bitstreams: 1 silva_rr_dr_araiq_par.pdf: 1063262 bytes, checksum: cc72dc79773da734cac767490756f56e (MD5) Previous issue date: 2016-05-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nanoestruturas unidimensionais de telúrio (Te1D) na forma de whiskers, fios e hélices foram preparados com facilidade por uma síntese em etapa única na presença de solução aquosa de Pluronic® F68 à baixas temperaturas (< 100 °C) e pressão ambiente. A forma das nanoestruturas puderam ser controladas de acordo com a cinética da reação. Estruturas empacotadas de nanowhiskers e nanofios de Te foram obtidas via auto-organização em interface líquido-líquido e pela técnica de drop-cast em substrato de Si/SiO2. Estruturas híbridas 1D foram obtidas utilizando nanoestruturas Te1D como molde de sacrifício para anexar nanopartículas metálicas ou mesmo produzir nanoestruturas 1D metálicas. Por exemplo, nanoestruturas híbridas 1D foram preparadas decorando nanofios de Te com nanopartículas de Ag em solução aquosa de poli(vinilpirrolidona). Nanoestruturas 1D de Au com forma de nódulos foram preparados por deslocamento galvânico de íons Au3+ em uma mistura de nanohélices de Te, ácido ascórbico e solução aquosa de poli(vinilpirrolidona). Além disso, nanohélices de Te foram funcionalizadas com uma camada resina resorcinol-formaldeído em condições brandas de síntese. A resina de resorcinol-formaldeído é uma via intermédia para explorar a deposição de compostos opticamente ativos tais como nanopartículas de hidroxicarbonato de Tb3+ ou nanopartículas de Au. Para aplicações práticas é essencial que estas nanoestruturas possam ser suportadas em filmes rígidos ou flexíveis de alta qualidade óptica. Filmes de polímeros naturais puros e filmes híbridos de sol-gel epóxi foram avaliados como potenciais matrizes hospedeiras para luminóforos. A fabricação de híbridos é baseada na incorporação de 3-glicidoxipropiltrimetoxissilano na solução homogênea de polímero natural com posterior secagem sobre uma superfície plana. Particularmente, filmes flexíveis de fibroína da seda e acetato de celulose e os seus híbridos derivados exibiram excelentes propriedades ópticas para hospedar compostos opticamente ativos. Por exemplo, compostos de Eu3+ emissores na região do vermelho e corantes fluorescentes foram incorporados em matriz pura de polímero e híbridos epóxi e suas propriedades ópticas foram investigadas. Laser de corantes por feedback distribuído (DFB) foram fabricados dopando grades de difração de fibroína de seda com Rodamina 6G. Devido a sua capacidade de replicar superfícies padronizadas com resolução nanométrica, grades de fibroina da seda dopadas com corante foram depositadas contra a grade de difração de uma mídia de disco compacto comercial. Lasers modificados de DFB baseados em filmes de fibroina contendo nanopartículas espalhadoras de luz de SiO2 e Ag aleatoriamente distribuídas na grade de fibroina demonstraram aumento da intensidade do laser, além de estreitamento da largura do pico de emissão. Filmes híbridos flexíveis e transparentes (> 85%) de fibroina da seda e acetato de celulose modificados com função epóxi e contendo compostos fluorescentes na região do vermelho como complexos β-dicetonato de Eu3+ e nanopartículas de YVO4:Eu3+ em baixa proporção relativa mássica (<5%) foram preparados. De maneira geral, o resultado são filmes homogêneos com funções epoxi e/ou alcoxissilano não hidrolisados disponíveis para outras modificações químicas. Devido a matéria-prima limitada de polímeros naturais para uma alta demanda de fabricação de dispositivos ópticos, é igualmente importante desenvolver materiais com base na reutilização de polímeros sintéticos. Filmes finos de poliestireno foram concebidos por dissolução de poliestireno expandido (EPS) recuperado de resíduos em D-limoneno, um solvente verde proveniente de óleos cítricos. Filmes transparentes dopados com complexos β-dicetonato de Eu3+ demonstraram excelente transparência e aptos para uso em guias de luz. Estes resultados são motivadores para a) a engenharia de nanoestruturas 1D com propriedades ópticas sintonizáveis bem como, b) desenvolvimento de híbridos flexíveis e transparentes baseados em híbridos de polímeros naturais com alta funcionalidade química ou polímeros sintéticos reciclados como potenciais matrizes hospedeiras ópticas almejadas em aplicações fotônicas. / One-dimensional Te nanostructures (Te1D) in the shape of whiskers, wires and helices were prepared by a facile one-pot synthesis in the presence of aqueous Pluronic® F68 solution at low temperatures (< 100 ºC) and ambient pressure. The shape of Te1D nanostructures could be manuvered according with the reaction kinectics. We evaluate some techniques to assemble Te1D nanostructures on the pursuit for complex nanoarchitectures. Bundles of Te nanowhiskers and nanowires were achieved by self-assembly in liquid-liquid interface or by drop-cast technique in Si/SiO2 substrates. 1D hybrid structures have been conceived by using Te1D nanostructures as sacrificial template to attach metallic nanoparticles or even produce metallic 1D nanostructures. For example, 1D hybrid nanostructures were easily prepared by decorating Te nanowires with Ag nanoparticles in aqueous solution of poly(vinylpyrrolidone). Au 1D nanostructures with nodular-like shape were prepared by galvanic displacement of Au3+ ions in a mixture of Te nanohelices, ascorbic acid and an aqueous solution of poly(vinylpyrrolidone). Furthermore, Te1D nanohelices were functionalized with a layer of resorcinol-formaldehyde resin at mild synthesis conditions. The RF resin allowed us to fashion an intermediate pathway to explore the deposition of optically active compounds like Tb3+ hydroxylcarbonate or Au nanoparticles. Seeking practical applications, these nanostructures should be hosted over rigid or flexible films possessing excellent optical properties. Pure natural polymers and epoxy sol-gel hybrids films were evaluated as potential host for luminophors. The fabrication of epoxy hybrids is based on the incorporation of 3-glycidoxypropyltrimethoxysiloxane on the homogenous solution of natural polymer with subsequent casting over flat surface. Particularly, flexible silk fibroin and cellulose acetate films and their derivative hybrids displayed excellent optical properties to host optically active compounds. For instance, red emitting Eu3+ compounds and fluorescent dyes were hosted on pure natural polymer and hybrid films and the optical features of the luminescent films were investigated thoroughly. Distributed feedback dye-lasers were fabricated by doping silk fibroin diffraction gratings with Rhodamine 6G. Owing its ability to mimic patterned surfaces at nanoscale resolution, dye-doped SF gratings were fabricated using replica-casting patterning against a commercial blank digital versatile disc as template. A modified DFB Laser based on SF films with Ag or SiO2 light scattering particles randomly distributed on the grating unveiled an enhancement of laser intensity withal narrowing of emission peak linewidth. Flexible and highly transparent SF- and CA-epoxy hybrids (> 85%) containing red fluorescent Eu3+ b-diketonate complex and YVO4:Eu3+ nanoparticles at low relative content (< 5 wt%) were tailored. In general, the outcome is homogeneous films with epoxy and/or unhydrolized alkoxysilane functions available for further chemical modification. Owing the limited feedstock of natural polymers for high demanding production of optical devices, it is equally important develop materials based on the reuse of synthetic polymers. Thin films of polystyrene were conceived by dissolving waste-recovered expanded-polystyrene (EPS) in D-limonene, a green solvent from citrus oil. Transparent EPS films doped with Eu3+ b-diketonate complex displayed excellent transparency and light waveguiding, These assertions provide a framework that motivates the research on a) engineering of 1D hybrids nanostructures with tunable optical properties and b) flexible natural polymer/epoxy hybrid with enhanced functionality or plastic recycled as potential optical hosts sought in photonic applications. / FAPESP: 2013/12367-6
7

Entwicklung eines naturnahen Bindemittels aus nachwachsenden Rohstoffen auf Proteinbasis zur Herstellung von Mitteldichten Faserplatten / Development of a near-natural protein based bonding agent for the production of medium density fibreboards

Schöpper, Christian 15 March 2006 (has links)
No description available.

Page generated in 0.098 seconds