Spelling suggestions: "subject:"diffraction grating."" "subject:"iffraction grating.""
11 |
Optical properties of actively controlled reflection and transmission gratings /Rodriguez, Miguel Angel, January 2000 (has links)
Thesis (Ph. D.)--Lehigh University, 2000. / Includes vita. Includes bibliographical references (leaves 189-194).
|
12 |
Analysis, design, and applications of subwavelength diffraction gratingsBrundrett, David L. 05 1900 (has links)
No description available.
|
13 |
Molecular fluorescence near metallic interfacesAndrew, Piers January 1998 (has links)
No description available.
|
14 |
Application of diffraction grating theory to analysis and fabrication of waveguide gratings.Li, Lifeng. January 1988 (has links)
This dissertation includes three separate studies of related waveguide grating phenomena. These studies deal with a numerical improvement of the integral method of diffraction grating theory, the theoretical analysis of waveguide gratings, and fabrication techniques for photoresist grating masks. The first topic addresses the acceleration of the convergence of the integral kernels. To improve the performance of the integral method for calculating diffraction grating efficiencies, the convergence of the integral kernels is studied. A nonlinear sequence transformation, Levin's u-transformation, is successfully applied to accelerate the convergence of the integral kernels. The computer execution time saving is significant. The application details and many numerical examples are given. The second subject is the ray optics theory of waveguide grating analysis. To establish a linkage between the analysis of diffraction gratings and the analysis of waveguide gratings, a new rigorous ray optics theory is developed. It takes into account phase changes on diffraction, multiple diffraction processes, depletion of the incident guided wave, and lateral shifts. A general characteristic equation that determines the waveguide grating attenuation (coupling) coefficient is derived. The symmetry properties of grating diffraction are applied to waveguide grating analysis for the first time. Lateral shifts of optical rays at a periodically corrugated interface similar to the Goos-Haenchen shift at a planar interface are suggested. The third subject is the in situ control of the development of photoresist grating masks. The existing method for monitoring and modeling photoresist grating development are modified and extended to monitoring and modeling photoresist grating mask development. Experimental examples, detailed theoretical considerations, and computer simulations are presented.
|
15 |
Characterization of photoinduced gratings in optical glass fibers.Kuo, Chai-Pei. January 1988 (has links)
The properties of photo-induced gratings in germania doped glass fibers were studied. Permanent phase gratings in a fiber core were fabricated by the mixing of two contra propagating waves. Experiments are described and results are presented which show that the strength of a photoinduced grating is strongly dependent on the writing power as well as the laser writing wavelength. A rigorous development of linear coupled mode theory for the contra propagation geometry is given and used to model the experimentally observed grating responses as a function of fine tuning frequency of probing light. Measurements have been done of the amplitude and phase response of the grating structure and compared with theoretical models of uniform and chirped gratings. The theoretically predicted negative group velocity dispersion in fiber grating was observed interferometrically and described in detail. The nonlinear coupled mode theory has been fully implemented in a computer program and some numerical results are given in the second part of this thesis. The dynamics of a pulse propagating in the fiber grating is simulated and the results show its dependence on pulse energy, frequency detuning, and the type of grating geometry. A limitation is found in the dispersion property of a constant amplitude fiber grating so that the pulse compression ratio and the width of a compressible pulse is strictly limited to ≅250 picoseconds.
|
16 |
Low cost, short wavelenght fiber Bragg grating strain sensor systemsVaughan, Lira 25 October 2002 (has links)
Fiber Bragg grating sensors have been constantly researched for the last ten
years and have finally begun to find use in the commercial market. However, one
of the major factors limiting their widespread use is their system cost. Their
lightweight, flexibility, electromagnetic immunity, and small size make fiber Bragg
grating (FBG) sensors feasible in hostile environments where electrical and
mechanical sensors may not function effectively. These sensor systems utilize
moderately expensive light sources and detectors at telecommunication
wavelengths of 1300 nm and 1550 nm. These are the center wavelengths of the
mass-produced FBGs and FBG phase masks. This thesis addresses the
development of a lower cost short wavelength fiber Bragg grating strain sensor
system using gratings written at 790 nm and 850 nm with the modified phase mask
method recently developed at Oregon State University. Short wavelength gratings
allow the use of less expensive semiconductor sources and silicon detectors, greatly
reducing the overall cost of a strain sensor system from approximately $1600 for a
1300 nm system to $1000 for a 790 nm system.
First, the fundamental properties and historical background of fiber Bragg
gratings were reviewed. Followed by a literature review of the structures,
fabrication methods, and applications of FBGs including sensor applications. The
design, manufacture, and assembly of the new short wavelength strain sensor
system were described including the production of pigtailed super-luminescent
edge emitting light emitting diodes (SELED) from commercial laser diodes, a fiber
recoater, and multiple attempts to write a fiber Bragg grating in the 750-850 nm
wavelength region. Finally, the short wavelength strain sensor system was
compared with a 1300 nm strain sensor detailing the potential cost savings with the
short wavelength system. / Graduation date: 2003
|
17 |
Exploring and developing the instrumental aspects of grating light reflection spectroscopy /Hamad, Mazen Lee, January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 166-169).
|
18 |
DESIGN AND FABRICATION OF HOLOGRAPHIC OPTICAL ELEMENTSChen, Chungte W. January 1980 (has links)
No description available.
|
19 |
Optimization of periodic devices using the finite element methodKhalaf, Loay D. 12 1900 (has links)
No description available.
|
20 |
High efficiency volume grating couplerSchultz, Stephen M. 08 1900 (has links)
No description available.
|
Page generated in 0.1473 seconds