• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 7
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 48
  • 11
  • 11
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modeling of undirectional thermal diffusers in shallow water.

Lee, Joseph Hun-Wei January 1977 (has links)
Thesis. 1977. Ph.D.--Massachusetts Institute of Technology. Dept. of Civil Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 269-271. / Ph.D.
32

Predictions On Absorption And Scattering Characteristics Of Acoustic Scatterers Modified With Micro-perforated Panels

Odabas, Erinc 01 September 2012 (has links) (PDF)
In this study, the basic absorption and scattering characteristics of acoustic scatterers, specifically Schroeder Diffusers, are investigated. Schroeder Diffusers are one of the most widely used acoustic scatterers in which the scattering phenomenon is predictable due to the geometry of the diffuser, based on a particular mathematical sequence. It is shown that it is possible to increase the amount of absorption by modifying the diffuser structure by means of adding perforated panels into the wells or narrowing diffuser wells. In room acoustics applications, diffusers are conventionally mounted to a wall or ceiling assumed to be rigid enough such that sound wave cannot penetrate through. This thesis proposes a new modification on these diffusers where the diffuser is not backed by a rigid surface / it is hung over a space instead. To construct such a configuration, diffuser wells are terminated with micro-perforated panels (MPP). Inclusion of MPP introduces additional losses / hence, higher absorption can be achieved. However, the most significant absorption in this configuration is achieved below the first resonance frequency of the panel-air space system due to the existence of non-rigid backing. This thesis aims to model the absorption and scattering mechanisms enabled with the non-rigid backing by improving a previously introduced mathematical model.
33

Air diffusion and solid contaminant behaviour in room ventilation : a CFD based integrated approach

Einberg, Gery January 2005 (has links)
One of the most fundamental human needs is fresh air. It has been estimated that people spend comparatively much time in indoor premises. That creates an elevated need for high-quality ventilation systems in buildings. The ventilation airflow rate is recognised as the main parameter for measuring the indoor air quality. It has been shown that the ventilation airflow rates have effects on respiratory diseases, on “sick building syndrome” symptoms, on productivity and perceived air quality. Ventilation is necessary to remove indoor-generated pollutants by diluting these to an acceptable level. The choice of ventilation airflow rate is often based on norms or standards in which the airflow rate is determined based on epidemiological research and field or laboratory measurements. However, the determination of ventilation flow rate is far more complex. Indoor air quality in the occupied zone can be dependent of many factors such as outdoor air quality, airflow rate, indoor generation of pollutants, moisture content, thermal environment and how the air is supplied into the human occupied zone. One needs to acknowledge the importance of air distribution which clearly affects the comfort of occupants. To design a ventilation system which considers all aspects of room ventilation can only be achieved by computer modelling. The objective of this thesis is to investigate air diffusion, indoor air quality and comfort issues by CFD (computational fluid dynamics) modelling. The crucial part of the CFD modelling is to adopt BCs (boundary conditions) for a successful and accurate modelling procedure. Assessing the CFD simulations by validated BCs enabled constructing the ventilation system virtually and various system layouts were tested to meet given design criteria. In parallel, full-scale measurements were conducted to validate the diffuser models and the implemented simplified particle-settling model. Both the simulations and the measurements reveal the full complexity of air diffusion coupled with solid contaminants. The air supply method is an important factor for distribution of heat, air velocity and solid contaminants. The influence of air supply diffuser location, contaminant source location and air supply method was tested both numerically and by measurements to investigate the influence of different parameters on the efficiency of room ventilation. As example of this, the well-known displacement ventilation is not fully able to evacuate large 10 μm airborne particles from a room. Ventilation should control the conditions in the human breathing zone and therefore the ventilation efficiency is an important parameter. A properly designed ventilation system could use less fresh air to maintain an acceptable level of contaminant concentration in the human breathing zone. That is why complete mixing of air is not recommended as the ventilation efficiency is low and the necessary airflow rate is relatively high compared to other ventilation strategies. Especially buoyancy-driven airflows from heat sources are an important part of ventilation and should not be hampered by supply airflow from the diffusers. All the results revealed that CFD presently is the only reliable method for optimising a ventilation system considering the air diffusion and contaminant level in all locations of any kind of room. The last part of the thesis addresses the possibility to integrate the CFD modelling into a building design process where architectural space geometry, thermal simulations and diffuser BCs could be embedded into a normal building design project. / QC 20101007
34

Hydraulics of duckbill valve jet diffusers /

Karandikar, Jaydeep Sharad. January 1997 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1998. / Includes bibliographical references (leaves 115-120).
35

Comércio formiga fronteiriço entre Venezuela e Brasil

Max André de Araújo Ferreira 22 December 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O presente trabalho parte da necessidade de investigar a dinâmica de comércio formiga fronteiriço em uma análise geral entre as cidades-gêmeas em toda a faixa de fronteira do Brasil e afunilando-se ao estudo do comércio formiga entre a Venezuela e o Brasil, através das cidades-gêmeas Santa Elena e Pacaraima. Assenta-se a pesquisa a análise dos aspectos dos difusores e contentores do comércio formiga. O estudo tem como objetivo investigar se o fluxo de comercio formiga na fronteira gerando transbordamento com efeitos de integração ou fragmentação no desenvolvimento regional e na integração entre Brasil e Venezuela, estruturando-se metodologicamente como pesquisa de revisão bibliográfica, revisão integrativa e estudo de caso. As cidades de Santa Elena de Uairén e Pacaraima identificam-se como um natural receptor de renda e repulsor de rendas e mercadorias. No estudo das tipologias qualitativas utilizou-se a análise weberiana dos tipos ideais do Comércio Formiga. A movimentação das rendas nesses municípios traz problemas para a economia desses dois países, como a evasão de rendas, pois o comércio local deixa de fomentar a economia, diminuindo a oferta de empregos e aumentando ainda mais a informalidade. / This work begins with the need to investigate the dynamics of border ant trade in an overall analysis of the twin cities across the border region of Brazil and tapering to the study of ant trade between Venezuela and Brazil, through the twin cities Santa Elena and Pacaraima. Founded to research the analysis of aspects of ant trade diffusers and containers. The study aims to investigate the ant trade flow bordering generating overflowing with integration effects or fragmentation in regional development and integration between Brazil and Venezuela, and is structured methodologically as literature review of research, integrative review and case study. The towns of Santa Elena de Uairen and Pacaraima identify themselves as a natural income recipient and repulsor rents and goods. In the study of qualitative typologies we used the Weberian analysis of ideal ant trade types. The balance of income in these municipalities causes problems for the economy of these two countries, such as evasion of income, for the local market fails to stimulate the economy, reducing the supply of jobs and further increasing informality.
36

Modelování obrazů proudění / Airflow modeling

Vičan, Martin January 2014 (has links)
The master thesis explores modelling fluid dynamics images in simulation software Star-CCM+ Version 8.04.007. Three proposed variants are modelled. The first variant describes modelling swirl diffusers, the second and third variant describe modelling wall diffusers. The results of modelling are processed in the form of scalar and vector arrays, which depict the velocity of flowing air, temperature and the age of air.
37

Simulação numérica de difusores tangenciais com modelo de tensões de Reynolds. / Numerical simulation of swirl diffusers with Reynolds stress model.

Sartori, Rafael de Freitas 20 September 2013 (has links)
Difusores de ar é um tema de particular interesse na indústria dos sistemas de ar condicionado e climatização. O difusor swirl (ou tangencial) é um tipo de difusor já utilizado em alguns ambientes climatizados. O seu comportamento é mais conhecido em aplicações no campo da combustão, mas, em aplicações de sistemas de ar condicionado o Número de Reynolds é bem menor, não há a combustão e as condições de contorno são diferentes. Além disso, têm-se poucos estudos voltados para estes difusores num domínio 3D. Com esta motivação, o presente trabalho apresenta as simulações de um difusor tangencial em vazões típicas de aplicações de conforto térmico personalizado, utilizando a modelo de turbulência Reynolds Stress em um domínio 3D. Algumas simulações em um domínio 2D são realizadas a fim de se obter algumas características essenciais do escoamento, como abertura e comprimento do jato. Porém, comparados ao experimento, os resultados 2D precisam ser melhorados. Esquemas de discretização de maior ordem são utilizados para se avaliar o desempenho. Nas simulações no domínio 3D, verifica-se que um resultado melhor é alcançado quando se refina a malha na região central do jato, logo abaixo do difusor. Dois métodos de especificação da condição de contorno de entrada são estudados: o primeiro consiste em utilizar os dados experimentais obtidos na saída do difusor para simular o escoamento sem a geometria do difusor e o segundo simula o difusor completo, aplicando a magnitude da velocidade perpendicularmente à superfície de entrada com base na vazão calculada pelos dados do experimento do PIV (Particle Image Velocimetry). Os resultados numéricos são comparados com o experimento. Verifica-se que o método de simulação sem o difusor apresenta resultados mais precisos com relação ao experimento e apresenta maiores vantagens na simulação numérica. / Air diffusers are a topic of particular interest in the industry of acclimatization and air conditioning systems. The swirl (or tangential) diffuser is a type of device already used in some air conditioned environments. Their behavior is best known in combustion applications, but in air conditioning systems applications, the Reynolds number is much lower, there is no combustion and the boundary conditions are different. In addition, there have been few studies on these diffusers in 3D domain. With this motivation, this work presents simulations of a tangential flow diffuser for applications of thermal comfort. The numerical study uses the Reynolds stress turbulence model in a 3D domain. Some simulations in a 2D domain are performed in order to obtain some essential features of the flow, as the width and length of the jet. However, compared to the experiment, the 2D results need to be improved. Higher order discretization schemes are used to evaluate performance. In 3D domain simulations, it is verified that a better result is achieved when the mesh is refined in the jets central region, just below the diffuser. Two methods of the inlet boundary conditions are studied: the first consists of using the experimental data obtained at the exit of the diffuser to simulate the flow without the geometry of the diffuser and the second method simulates the diffuser completely, applying the velocity magnitude perpendicular to the inlet surface based on the calculated flow rate with experimental data of PIV (Particle Image Velocimetry). The numerical results are compared with experiment. It is noted that a simulation method without the geometry of the diffuser provides more accurate results with the experiment and has major advantages in the numerical simulation.
38

Simulação numérica de difusores tangenciais com modelo de tensões de Reynolds. / Numerical simulation of swirl diffusers with Reynolds stress model.

Rafael de Freitas Sartori 20 September 2013 (has links)
Difusores de ar é um tema de particular interesse na indústria dos sistemas de ar condicionado e climatização. O difusor swirl (ou tangencial) é um tipo de difusor já utilizado em alguns ambientes climatizados. O seu comportamento é mais conhecido em aplicações no campo da combustão, mas, em aplicações de sistemas de ar condicionado o Número de Reynolds é bem menor, não há a combustão e as condições de contorno são diferentes. Além disso, têm-se poucos estudos voltados para estes difusores num domínio 3D. Com esta motivação, o presente trabalho apresenta as simulações de um difusor tangencial em vazões típicas de aplicações de conforto térmico personalizado, utilizando a modelo de turbulência Reynolds Stress em um domínio 3D. Algumas simulações em um domínio 2D são realizadas a fim de se obter algumas características essenciais do escoamento, como abertura e comprimento do jato. Porém, comparados ao experimento, os resultados 2D precisam ser melhorados. Esquemas de discretização de maior ordem são utilizados para se avaliar o desempenho. Nas simulações no domínio 3D, verifica-se que um resultado melhor é alcançado quando se refina a malha na região central do jato, logo abaixo do difusor. Dois métodos de especificação da condição de contorno de entrada são estudados: o primeiro consiste em utilizar os dados experimentais obtidos na saída do difusor para simular o escoamento sem a geometria do difusor e o segundo simula o difusor completo, aplicando a magnitude da velocidade perpendicularmente à superfície de entrada com base na vazão calculada pelos dados do experimento do PIV (Particle Image Velocimetry). Os resultados numéricos são comparados com o experimento. Verifica-se que o método de simulação sem o difusor apresenta resultados mais precisos com relação ao experimento e apresenta maiores vantagens na simulação numérica. / Air diffusers are a topic of particular interest in the industry of acclimatization and air conditioning systems. The swirl (or tangential) diffuser is a type of device already used in some air conditioned environments. Their behavior is best known in combustion applications, but in air conditioning systems applications, the Reynolds number is much lower, there is no combustion and the boundary conditions are different. In addition, there have been few studies on these diffusers in 3D domain. With this motivation, this work presents simulations of a tangential flow diffuser for applications of thermal comfort. The numerical study uses the Reynolds stress turbulence model in a 3D domain. Some simulations in a 2D domain are performed in order to obtain some essential features of the flow, as the width and length of the jet. However, compared to the experiment, the 2D results need to be improved. Higher order discretization schemes are used to evaluate performance. In 3D domain simulations, it is verified that a better result is achieved when the mesh is refined in the jets central region, just below the diffuser. Two methods of the inlet boundary conditions are studied: the first consists of using the experimental data obtained at the exit of the diffuser to simulate the flow without the geometry of the diffuser and the second method simulates the diffuser completely, applying the velocity magnitude perpendicular to the inlet surface based on the calculated flow rate with experimental data of PIV (Particle Image Velocimetry). The numerical results are compared with experiment. It is noted that a simulation method without the geometry of the diffuser provides more accurate results with the experiment and has major advantages in the numerical simulation.
39

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF DIFFUSER-EJECTOR SYSTEMS FOR QUALIFICATION OF ROCKET THRUSTERS AT SIMULATED ALTITUDES

Caglar Yilmaz (15346321) 24 April 2023 (has links)
<p>  </p> <p>High altitude test facilities are needed for ground testing of upper stage rocket engines or small satellite thrusters with high expansion ratio nozzles to ensure full-flowing nozzle conditions. Rocket exhaust diffusers and ejector systems are essential components of these facilities and are frequently used to set desired simulated altitude/low pressure conditions and pump out rocket exhaust products. </p> <p>This dissertation combined experimental and numerical efforts on diffuser-ejector systems. The experimental efforts included the development of a Second Throat Exhaust Diffuser (STED) to aid with the qualification of space thrusters in the Purdue Altitude Chamber Facility. While performing these experiments, we characterized the single and two-stage ejector systems operating in conjunction with the diffuser to obtain and maintain specific simulated altitudes. </p> <p>The concurrent numerical effort focused on validating a Computational Fluid Dynamics (CFD) approach based on Reynolds-averaged Navier–Stokes equations flow simulations. After validating the ejector CFD, we used it to derive a corrective coefficient of a lumped parameter ejector model (LPM) developed previously for the ejectors used in the Purdue Altitude Facility. We created variable coefficient maps for the stages of the two-stage ejector system using the same LPM and the test data from one of our experiments. </p> <p>We designed, manufactured, and then validated a STED for altitude testing of a ~50 lbf hypergolic hybrid motor as a part of a NASA JPL project. The designed STED enabled the operation of the hybrid motor for the full duration of the test firing (about 2 seconds) at a simulated altitude of 102,000 feet, slightly above the targeted altitude of 100,000 feet. We also validated our diffuser CFD approach by creating a simulation using the measured diffuser back pressure and the average motor chamber pressure. </p> <p>We then devised an experiment to investigate several diffuser–ejector system configurations using cold gas thrusters with conical and bell nozzles. The main aim of that experiment was to explore the effects of different thruster nozzle geometries, diffuser geometries, and thruster/ejector operational parameters on the performance of a diffuser–ejector system. For all the configurations tested, we reported on the minimum starting and operating pressure ratios and corresponding correction factors on the normal shock method. The large hysteresis regions obtained mostly with bell nozzles having a high initial expansion angle provided an opportunity to economize the facility resources. In some cases which were later found to violate STED second throat contraction limits, we experienced a choking flow at the second throat. Then, we studied the second throat contraction limits in detail using CFD in addition to the experimental data and explored minimum diffuser second throats enabling diffuser starting and improving aerodynamic efficiency. </p> <p>Finally, we machined a larger scale cold gas thruster with different nozzle geometries (having throat diameters in the range of 0.367 – 0.52 inches) from acrylic rods to study possible flow separation and gas condensation events that could occur during tests in the altitude chamber. The main difference here with the previous experiment was that the diffuser (JPL STED) was fixed, and the two-stage ejector system was used to create the necessary back pressure. With the experiments performed at varying axial gaps between the nozzle exit and diffuser inlet, we were able to investigate the effect of that on the diffuser performance. The experimental data collected in this work and the complementary numerical efforts served to generate the operating envelope of the Purdue Altitude Chamber Facility.  </p>
40

Design of a centrifugal compressor for application in micro gas turbines

De Villiers, Lodewyk Christoffel Barend 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: This thesis details the methodology for developing a centrifugal compressor for application in a Micro Gas Turbine (MGT). This research forms part of a larger project, namely project Ballast, initiated by the South African Air Force (SAAF) in conjunction with Armscor. The methodology encompasses the development of a mean-line code that makes use of 1-dimensional theory in order to create an initial centrifugal compressor geometry which includes a rotor as well as radial vaned diffuser. This is followed by a Computational Fluid Dynamics (CFD) simulation process during which the compressor is optimised in order to maximise its performance. Before manufacturing a Finite Element Analysis (FEA) is done in order to ensure that the rotor does not fail during testing. The testing of the compressor is done to compare the numerical results with the experimental results and in so doing confirms the design process. A previous student had designed a rotor by making use of a mean-line code as well as a CFD optimisation process. The rotor had a measured total-static pressure ratio of roughly 2.8 at 121 kRPM and a total-total isentropic efficiency of 79.1 % at said rotational speed. The inclusion of a vaned diffuser resulted in a higher total-static pressure ratio and accordingly the compressor designed in this report has a CFD determined total-static pressure ratio of 3.0. The efficiency would however drop and as such a total-total isentropic efficiency of 76.5 % was determined theoretically. The theoretical results correlated well with the experimental results and as such it was concluded that the design methodology developed was sound. / AFRIKAANSE OPSOMMING: Hierdie tesis bespreek die metodologie vir die ontwikkeling van ‘n sentrifugale kompressor vir toepassing in ‘n Mikro-Gasturbine (MGT). Die tesis vorm deel van ‘n groter projek, genaamd die Ballast projek, wat deur die Suid-Afrikaanse Lugmag (SALM) daargestel is in samewerking met Krygkor. Die metodologie behels die ontwikkeling van ‘n middel-lyn kode wat gebruik maak van 1-dimensionele teorie om die aanvanklike geometrie van die kompressor te skep. Die geometrie bevat beide die rotor asook die gelemde radiale diffusor. Hierdie proses word gevolg deur ‘n Berekeningsvloeidinamika (BVD) simulasie waartydens die kompressor geoptimeer word om sodoende die verrigting ten volle te verbeter. Voordat vervaardiging plaasvind word ‘n Eindige Element Analise (EEA) toegepas om te verseker dat die rotor nie sal faal tydens toetse nie. Die toetse word gedoen sodat die eksperimentele resultate met die numeriese resultate vergelyk kan word. Sodoende word die proses waardeur die kompressor ontwikkel word bevestig. ‘n Vorige student het ‘n rotor ontwerp deur gebruik te maak van ‘n middel-lyn kode asook ‘n BVD optimerings proses. Die rotor het ‘n gemete totaal-statiese drukverhouding van ongeveer 2.8 teen 121 kRPM gelewer en ‘n totaal-totale isentropiese benutingsgraad van 79.1 % teen dieselfde omwentelingspoed. Met die insluiting van ‘n gelemde radiale diffuser word ‘n hoër totaal-statiese druk verhouding verwag en as sulks lewer die nuut-ontwerpte kompressor soos in die tesis bespreek ‘n teoretiese totaal-statiese drukverhouding van 3.0. Die benutingsgraad sal egter daal en daarvolgens het die nuwe kompressor ‘n totaal-totale isentropiese benutingsgraad van 76.5 % gelewer. Die eksperimentele resultate het goed ooreengestem met die teoretiese resultate en as sulks was dit besluit dat die ontwerps-metodologie goed is.

Page generated in 0.05 seconds