Spelling suggestions: "subject:"diffusion simulation"" "subject:"diiffusion simulation""
1 |
Al-Ga Sacrificial Anodes: Understanding Performance via Simulation and Modification of Alloy SegregationKidd, Michael Scott Jr. 19 April 2019 (has links)
Marine structures must withstand the corrosive effects of salt water in a way that is low cost, reliable, and environmentally friendly. Aluminum satisfies these conditions, and would be a good choice for a sacrificial anode to protect steel structures if it did not passivate. However, various elements can be added to aluminum to prevent this passivation. Currently, Al-Ga alloys are used commercially as sacrificial anodes but their performance is not consistent. In this research, Thermo-Calc software was used to simulate various aspects of the Al-Ga system in an attempt to understand and potentially correct this reliability issue. Simulations showed that gallium segregates to the grain boundaries during solidification and then diffuses back into the grains during cooling to room temperature. Simulations also suggest that faster cooling rates and larger grains cause the potential segregation of gallium at the grain boundaries to remain after cooling. A set of aluminum plus 0.1% weight percent gallium alloy plates were produced with varying cooling rates, along with a control set (cooled slowly in a sand mold). Some samples were later homogenized via annealing. Samples were subjected to a 168 hour long galvanostatic test to assess voltage response. The corrosion performance of samples was found to have both consistent and optimal voltage range when subjected to quick cooling rates followed by annealing. Testing samples at near freezing temperature seems to completely remove optimal corrosion behavior, suggesting that there are multiple causes for the voltage behavior. / Master of Science / Ships must withstand the corrosive effects of salt water in a way that is low cost, reliable, and environmentally friendly. Aluminum has properties which could allow a plate of it to rust instead of a ship it is attached to, thus protecting the ships from rusting. However, because aluminum usually does not rust, gallium can be added to aluminum to allow it to rust. Currently, aluminum-gallium alloys are used commercially to protect ships, but their performance is not consistent. In this research, various aspects of the aluminum-gallium system were simulated in an attempt to understand and potentially correct this reliability issue. Simulations showed that the gallium concentration may not be uniform in the alloy, and various conditions can cause the gallium concentration to be inconsistent. A set of aluminum-gallium alloy plates were cast in molds from liquid aluminum. Some of the plates were cooled quickly, and some cooled slowly. Some samples were later heated in an oven at high temperatures in an attempt to even out the gallium concentration. Samples were subjected to tests to observe corrosion behavior. The corrosion performance of samples was found to be best when subjected to quick cooling rates followed by the oven heating. Testing the samples in cold temperatures seemed to remove the desired corrosion behavior, suggesting that there are multiple reasons for the inconsistent corrosion behavior of aluminum gallium.
|
2 |
An Explorative Parameter Sweep: Spatial-temporal Data Mining in Stochastic Reaction-diffusion SimulationsWrede, Fredrik January 2016 (has links)
Stochastic reaction-diffusion simulations has become an efficient approach for modelling spatial aspects of intracellular biochemical reaction networks. By accounting for intrinsic noise due to low copy number of chemical species, stochastic reaction-diffusion simulations have the ability to more accurately predict and model biological systems. As with many simulations software, exploration of the parameters associated with the model can be needed to yield new knowledge about the underlying system. The exploration can be conducted by executing parameter sweeps for a model. However, with little or no prior knowledge about the modelled system, the effort for practitioners to explore the parameter space can get overwhelming. To account for this problem we perform a feasibility study on an explorative behavioural analysis of stochastic reaction-diffusion simulations by applying spatial-temporal data mining to large parameter sweeps. By reducing individual simulation outputs into a feature space involving simple time series and distribution analytics, we were able to find similar behaving simulations after performing an agglomerative hierarchical clustering.
|
3 |
Detailed biochemical modelling and analysis methodologies for industrial biotechnologyAngeles Martinez, Liliana January 2015 (has links)
Many industrial processes use biological agents as catalysts. In this context, the study of the cellular metabolism becomes relevant for planning the best strategies (environmental and/or genetic modifications) to manipulate the cell in order to maximise the production of a metabolite of interest and minimise the by-products one. This increases the yield of the fermentation and reduces the cost of product recovery; thereby the profitability of the process is improved. The intracellular reactions are carried out in a complex, crowded and heterogeneous medium composed by solid components (macromolecules, ions, enzymes, small solutes, etc.) in a fluid phase called cytoplasm, all of them enclosed within the cellular membrane. The interactions among the intracellular components (as well as with the extracellular environment) determine the behaviour of the organism. The modelling and simulations of these interactions help the understanding of the metabolism. The aim of this thesis is to provide generic tools for the analysis and simulation of metabolic systems under the intracellular environmental conditions. In particular, this research focuses on the estimation of metabolic fluxes and the simulation of the diffusion process. The stoichiometric models have been widely used for the calculation of unmeasured fluxes in a metabolic network, assuming the system is at steady state. The addition of thermodynamic constraints allows only the prediction of fluxes that go in the direction of the Gibbs free energy drop. The Gibbs free energy change ( ) depends on the (intracellular) environmental conditions and determine the direction, feasibility and reversibility of the reactions involved in the pathways. The thermodynamically constrained stoichiometric model proposed here allows the estimation of the range of fluxes of a metabolic network, where the information about the presence of the enzymes that catalyse the reactions can be incorporated (if available). The effect of considering a zero flux reaction as blocked or at equilibrium on the flux predictions was investigated, as well as the environmental conditions ionic strength, temperature and pH. Additionally, since the solid components within the cell occupy about 40% of its total volume, these crowding conditions could alter the thermodynamic feasibility of the pathways. For this reason, the thermodynamically constrained stoichiometric model is extended to incorporate the crowding effect. The case study used in this work is the central carbon metabolic network of Actinobacillus succinogenes for the production of succinic acid from glycerol, a by-product in the biodiesel manufacture. Moreover, the crowding conditions also affect the diffusion of the molecules. The prokaryotic cells have been widely used in fermentation processes for the production of metabolites of interest. In this type of cells the diffusion is the primary mean of the particles’ motion, so that the diffusion reduction due to the crowding conditions could affect the possibility of encounter among the reactants, decreasing the reactions’ rate and therefore the yield of the process. A methodology based on the Lattice Boltzmann Method (LBM) and the Scaled Particle Theory (SPT) is presented in this thesis for fast simulations of the diffusion of hard-disk molecules in 2D crowded systems, which also allows evaluating the effect of the molecules’ size on their diffusion.
|
4 |
Effects of alternative jet fuels on aerospace-grade composites: experimental and modeling studiesHarich, Naoufal 12 May 2023 (has links) (PDF)
The aviation industry aims to reduce its environmental impact through innovation and research. The usage of composite materials for multiple primary structures represents one such measure. Several alternative fuels were approved and used along with the Federal Aviation Administration (FAA). These alternative fuels are produced from wastes and biomasses. Some alternative fuels were initially only approved as drop-in fuels, meaning they must be blended with conventional fuels to operate. Fuel tanks are usually embedded into the wing structure, which is mainly made of composite materials. These composites tend to absorb fluids it encounters through their matrix phase. The absorption behavior of conventional fuels by composite materials is well documented, while alternative fuels, blended or pure, are not as widely reported. The effects of four alternative fuel blends on aerospace-grade composites were investigated and compared with the conventional fuel Jet A. No significant differences were found in weight gain. The thermomechanical properties changes were also studied, with no difference between the alternative fuel blends and the conventional fuel. Additionally, model fluids with similar chemical structures as alternative fuels were used. The uptake of these model fluids was studied cyclically and compared with Jet A and one aromatic fluid. Small differences were seen in the weight gain results, primarily due to the type of model fluids used. Also, the thermomechanical properties showed no differences between these model fluids, Jet A and the pure aromatic fluid. This means that the slight differences in weight gain did not affect the changes in properties. From the results obtained, the alternative fuels blended, and the model fluids showed no differences in effects on the thermomechanical properties versus Jet A. This implies that similar effects are expected from either type of fluids used. Finite element analysis was used to model fluid’s diffusion in composite materials using different material parameters. The parameters were fiber packing, arrangement and permeability. Each parameters impacted the equilibrium uptake and the diffusion rate differently.
|
5 |
The Organic Permeable Base Transistor:Kaschura, Felix 23 October 2017 (has links) (PDF)
Organic transistors are a core component for basically all relevant types of fully organic circuits and consumer electronics. The Organic Permeable Base Transistor (OPBT) is a transistor with a sandwich geometry like in Organic Light Emitting Diodes (OLEDs) and has a vertical current transport. Therefore, it combines simple fabrication with high performance due its short transit paths and has a fairly good chance of being used in new organic electronics applications that have to fall back to silicon transistors up to now. A detailed understanding of the operation mechanism that allows a targeted engineering without trial-and-error is required and there is a need for universal optimization techniques which require as little effort as possible. Several mechanisms that explain certain aspects of the operation are proposed in literature, but a comprehensive study that covers all transistor regimes in detail is not found. High performances have been reported for organic transistors which are, however, usually limited to certain materials. E. g., n-type C60 OPBTs are presented with excellent performance, but an adequate p-type OPBT is missing.
In this thesis, the OPBT is investigated under two aspects:
Firstly, drift-diffusion simulations of the OPBT are evaluated. By comparing the results from different geometry parameters, conclusions about the detailed operation mechanism can be drawn. It is discussed where charge carriers flow in the device and which parameters affect the performance. In particular, the charge carrier transmission through the permeable base layer relies on small openings. Contrary to an intuitive view, however, the size of these openings does not limit the device performance.
Secondly, p-type OPBTs using pentacene as the organic semiconductor are fabricated and characterized with the aim to catch up with the performance of the n-type OPBTs. It is shown how an additional seed-layer can improve the performance by changing the morphology, how leakage currents can be defeated, and how parameters like the layer thickness should be chosen. With the combination of all presented optimization strategies, pentacene OPBTs are built that show a current density above 1000 mA/cm^2 and a current gain of 100. This makes the OPBT useful for a variety of applications, and also complementary logic circuits are possible now. The discussed optimization strategies can be extended and used as a starting point for further enhancements. Together with the deep understanding obtained from the simulations, purposeful modifications can be studied that have a great potential. / Organische Transistoren stellen eine Kernkomponente für praktisch jede Art von organischen Schaltungen und Elektronikgeräten dar. Der “Organic Permeable Base Transistor” (OPBT, dt.: Organischer Transistor mit durchlässiger Basis) ist ein Transistor mit einem Schichtaufbau wie in organischen Leuchtdioden (OLEDs) und weist einen vertikalen Stromfluss auf. Somit wird eine einfache Herstellung mit gutem Verhalten und Leistungsfähigkeit kombiniert, welche aus den kurzen Weglängen der Ladungsträger resultiert. Damit ist der OPBT bestens für neuartige organische Elektronik geeignet, wofür andernfalls auf Siliziumtransistoren zurückgegriffen werden müsste. Notwendig sind ein tiefgehendes Verständnis der Funktionsweise, welches ein zielgerichtetes Entwickeln der Technologie ohne zahlreiche Fehlversuche ermöglicht, sowie universell einsetzbare und leicht anwendbare Optimierungsstrategien. In der Literatur werden einige Mechanismen vorgeschlagen, die Teile der Funktionsweise betrachten, aber eine umfassende Untersuchung, die alle Arbeitsbereiche des Transistors abdeckt, findet sich derzeit noch nicht. Ebenso gibt es einige Veröffentlichungen, die Transistoren mit hervorragender Leistungsfähigkeit zeigen, aber meist nur mit Materialien für einen Ladungsträgertyp erzielt werden. So gibt es z.B. n-typ OPBTs auf Basis von C60, für die bisher vergleichbare p-typ OPBTs fehlen.
In dieser Arbeit werden daher die folgenden beiden Aspekte des OPBT untersucht:
Einerseits werden Drift-Diffusions-Simulationen von OPBTs untersucht und ausgewertet. Kennlinien und Ergebnisse von Transistoren aus verschiedenen Parametervariationen können verglichen werden und erlauben damit Rückschlüsse auf verschiedenste Aspekte der Funktionsweise. Der Fluss der Ladungsträger sowie für die Leistungsfähigkeit wichtige Parameter werden besprochen. Insbesondere sind für die Transmission von Ladungsträgern durch die Basisschicht kleine Öffnungen in dieser nötig. Die Größe dieser Öffnungen stellt jedoch entgegen einer intuitiven Vorstellung keine Begrenzung für die erreichbaren Ströme dar.
Andererseits werden p-typ OPBTs auf Basis des organischen Halbleiters Pentacen hergestellt und charakterisiert. Das Ziel ist hierbei die Leistungsfähigkeit an die n-typ OPBTs anzugleichen. In dieser Arbeit wird gezeigt, wie durch eine zusätzliche Schicht die Morphologie und die Transmission verbessert werden kann, wie Leckströme reduziert werden können und welche Parameter bei der Optimierung besondere Beachtung finden sollten. Mit all den Optimierungen zusammen können Pentacen OPBTs hergestellt werden, die Stromdichten über 1000 mA/cm^2 und eine Stromverstärkung über 100 aufweisen. Damit kann der OPBT für eine Vielzahl von Anwendungen eingesetzt werden, unter anderem auch in Logik-Schaltungen zusammen mit n-typ OPBTs. Die besprochenen Optimierungen können weiterentwickelt werden und somit als Startpunkt für anschließende Verbesserungen dienen. In Verbindung mit erlangten Verständnis aus den Simulationsergebnissen können somit aussichtsreiche Veränderungen an der Struktur des OPBTs zielgerichtet eingeführt werden.
|
6 |
The Organic Permeable Base Transistor:: Operation Principle and OptimizationsKaschura, Felix 25 September 2017 (has links)
Organic transistors are a core component for basically all relevant types of fully organic circuits and consumer electronics. The Organic Permeable Base Transistor (OPBT) is a transistor with a sandwich geometry like in Organic Light Emitting Diodes (OLEDs) and has a vertical current transport. Therefore, it combines simple fabrication with high performance due its short transit paths and has a fairly good chance of being used in new organic electronics applications that have to fall back to silicon transistors up to now. A detailed understanding of the operation mechanism that allows a targeted engineering without trial-and-error is required and there is a need for universal optimization techniques which require as little effort as possible. Several mechanisms that explain certain aspects of the operation are proposed in literature, but a comprehensive study that covers all transistor regimes in detail is not found. High performances have been reported for organic transistors which are, however, usually limited to certain materials. E. g., n-type C60 OPBTs are presented with excellent performance, but an adequate p-type OPBT is missing.
In this thesis, the OPBT is investigated under two aspects:
Firstly, drift-diffusion simulations of the OPBT are evaluated. By comparing the results from different geometry parameters, conclusions about the detailed operation mechanism can be drawn. It is discussed where charge carriers flow in the device and which parameters affect the performance. In particular, the charge carrier transmission through the permeable base layer relies on small openings. Contrary to an intuitive view, however, the size of these openings does not limit the device performance.
Secondly, p-type OPBTs using pentacene as the organic semiconductor are fabricated and characterized with the aim to catch up with the performance of the n-type OPBTs. It is shown how an additional seed-layer can improve the performance by changing the morphology, how leakage currents can be defeated, and how parameters like the layer thickness should be chosen. With the combination of all presented optimization strategies, pentacene OPBTs are built that show a current density above 1000 mA/cm^2 and a current gain of 100. This makes the OPBT useful for a variety of applications, and also complementary logic circuits are possible now. The discussed optimization strategies can be extended and used as a starting point for further enhancements. Together with the deep understanding obtained from the simulations, purposeful modifications can be studied that have a great potential.:1 Introduction and Motivation
2 Theory
2.1 Organic Semiconductors
2.1.1 Organic Molecules and Solids
2.1.2 Charge Carrier Transport
2.1.3 Charge Carrier Injection
2.1.4 Doping
2.2 Organic Permeable Base Transistors
2.2.1 Structure
2.2.2 Basic Operation Principle
3 Overview of Different Transistor Architectures
3.1 Organic Field Effect Transistors
3.2 Organic Permeable Base Transistors
3.2.1 Development of the Permeable Base Transistor
3.2.2 Optimization Strategies
3.3 Comparison to Inorganic Transistors
3.4 Other Emerging Transistor Concepts
3.4.1 OSBT
3.4.2 Step-Edge OFET
3.4.3 VOFET
3.4.4 IGZO Devices
4 Experimental
4.1 Materials and their Properties
4.1.1 Pentacene
4.1.2 F6TCNNQ
4.1.3 Aluminum Oxide
4.2 Fabrication
4.2.1 Thermal Vapor Deposition
4.2.2 Chamber Details and Processing Procedure
4.2.3 Sample Structure
4.3 Characterization Methods and Tools
4.3.1 Electrical Characterization
4.3.2 Morphology
4.3.3 XPS
5 Simulations and Working Mechanism
5.1 Simulation Setup
5.1.1 Overview
5.1.2 OPBT Model
5.1.3 Drift-Diffusion Solver
5.1.4 Post-Processing of Simulation Data
5.2 Basic Concept
5.2.1 Base Sweep Regions
5.2.2 Correlation with charge carrier density and potential
5.3 Charge Carrier Accumulation
5.3.1 Accumulation at Emitter and Collector
5.3.2 Current Flow
5.3.3 Area contributing to the current flow
5.4 Current Limitation Mechanisms
5.4.1 Varying Size of the Opening
5.4.2 Channel Potential
5.4.3 Limitation of Base-Emitter Transport
5.4.4 Intrinsic Layer Variation
5.5 Opening Shapes
5.5.1 Cylindrical Opening and Symmetry
5.5.2 Truncated Cone Setup
5.6 Base Leakage Currents
5.6.1 Description of the Insulator
5.6.2 Top and Bottom Contribution
5.6.3 Validity of Calculation
5.7 Analytical Description of the OPBT base sweep
5.7.1 Description of operation regions
5.7.2 Transition Voltages and Full Characteristics
5.7.3 Comparison to Experiment
5.8 Output Characteristics
5.8.1 Saturation region
5.8.2 Linear region
5.8.3 Intrinsic Gain
5.9 Summary of Operation Mechanism
6 Nin-Devices and Structuring
6.1 Effect of Accumulation and Scalability
6.1.1 Active Area and Electrode Overlap
6.1.2 Indirect Structuring
8 Contents
6.1.3 Four-Wire Measurement
6.1.4 Pulsed Measurements
6.2 Mobility Measurement
6.2.1 Mobility Extraction from a Single IV Curve
6.2.2 Verification of the SCLC using Thickness Variations
6.3 Geometric Diode
7 Optimization of p-type Permeable Base Transistors
7.1 Introduction to p-type Devices
7.2 Characteristics of OPBTs
7.2.1 Diode characteristics
7.2.2 Base sweep
7.2.3 Output characteristics
7.3 Seed-Layer
7.3.1 Process of Opening Formation
7.3.2 Performance using different Seed-Layers
7.4 Built-in field
7.4.1 Effect on Performance
7.4.2 Explanation for the Transmission Improvement
7.5 Base Insulation
7.5.1 Importance of Base Insulation
7.5.2 Additional Insulating Layers and Positioning
7.5.3 Enhancement of Native Aluminum Oxide
7.6 Complete Optimization
7.6.1 Indirect Structuring in OPBTs
7.6.2 Combination of different Optimization Techniques
7.7 Potential of the Technology
7.7.1 Future Improvements
7.7.2 Achievable Performance
7.8 Demonstration of the Organic Permeable Base Transistor
7.8.1 Simple OLED driver
7.8.2 An Astable Oscillator using p-type OPBTs
7.8.3 An OLED Driver using n-type OPBTs controlled by Organic Solar Cells
8 Conclusion / Organische Transistoren stellen eine Kernkomponente für praktisch jede Art von organischen Schaltungen und Elektronikgeräten dar. Der “Organic Permeable Base Transistor” (OPBT, dt.: Organischer Transistor mit durchlässiger Basis) ist ein Transistor mit einem Schichtaufbau wie in organischen Leuchtdioden (OLEDs) und weist einen vertikalen Stromfluss auf. Somit wird eine einfache Herstellung mit gutem Verhalten und Leistungsfähigkeit kombiniert, welche aus den kurzen Weglängen der Ladungsträger resultiert. Damit ist der OPBT bestens für neuartige organische Elektronik geeignet, wofür andernfalls auf Siliziumtransistoren zurückgegriffen werden müsste. Notwendig sind ein tiefgehendes Verständnis der Funktionsweise, welches ein zielgerichtetes Entwickeln der Technologie ohne zahlreiche Fehlversuche ermöglicht, sowie universell einsetzbare und leicht anwendbare Optimierungsstrategien. In der Literatur werden einige Mechanismen vorgeschlagen, die Teile der Funktionsweise betrachten, aber eine umfassende Untersuchung, die alle Arbeitsbereiche des Transistors abdeckt, findet sich derzeit noch nicht. Ebenso gibt es einige Veröffentlichungen, die Transistoren mit hervorragender Leistungsfähigkeit zeigen, aber meist nur mit Materialien für einen Ladungsträgertyp erzielt werden. So gibt es z.B. n-typ OPBTs auf Basis von C60, für die bisher vergleichbare p-typ OPBTs fehlen.
In dieser Arbeit werden daher die folgenden beiden Aspekte des OPBT untersucht:
Einerseits werden Drift-Diffusions-Simulationen von OPBTs untersucht und ausgewertet. Kennlinien und Ergebnisse von Transistoren aus verschiedenen Parametervariationen können verglichen werden und erlauben damit Rückschlüsse auf verschiedenste Aspekte der Funktionsweise. Der Fluss der Ladungsträger sowie für die Leistungsfähigkeit wichtige Parameter werden besprochen. Insbesondere sind für die Transmission von Ladungsträgern durch die Basisschicht kleine Öffnungen in dieser nötig. Die Größe dieser Öffnungen stellt jedoch entgegen einer intuitiven Vorstellung keine Begrenzung für die erreichbaren Ströme dar.
Andererseits werden p-typ OPBTs auf Basis des organischen Halbleiters Pentacen hergestellt und charakterisiert. Das Ziel ist hierbei die Leistungsfähigkeit an die n-typ OPBTs anzugleichen. In dieser Arbeit wird gezeigt, wie durch eine zusätzliche Schicht die Morphologie und die Transmission verbessert werden kann, wie Leckströme reduziert werden können und welche Parameter bei der Optimierung besondere Beachtung finden sollten. Mit all den Optimierungen zusammen können Pentacen OPBTs hergestellt werden, die Stromdichten über 1000 mA/cm^2 und eine Stromverstärkung über 100 aufweisen. Damit kann der OPBT für eine Vielzahl von Anwendungen eingesetzt werden, unter anderem auch in Logik-Schaltungen zusammen mit n-typ OPBTs. Die besprochenen Optimierungen können weiterentwickelt werden und somit als Startpunkt für anschließende Verbesserungen dienen. In Verbindung mit erlangten Verständnis aus den Simulationsergebnissen können somit aussichtsreiche Veränderungen an der Struktur des OPBTs zielgerichtet eingeführt werden.:1 Introduction and Motivation
2 Theory
2.1 Organic Semiconductors
2.1.1 Organic Molecules and Solids
2.1.2 Charge Carrier Transport
2.1.3 Charge Carrier Injection
2.1.4 Doping
2.2 Organic Permeable Base Transistors
2.2.1 Structure
2.2.2 Basic Operation Principle
3 Overview of Different Transistor Architectures
3.1 Organic Field Effect Transistors
3.2 Organic Permeable Base Transistors
3.2.1 Development of the Permeable Base Transistor
3.2.2 Optimization Strategies
3.3 Comparison to Inorganic Transistors
3.4 Other Emerging Transistor Concepts
3.4.1 OSBT
3.4.2 Step-Edge OFET
3.4.3 VOFET
3.4.4 IGZO Devices
4 Experimental
4.1 Materials and their Properties
4.1.1 Pentacene
4.1.2 F6TCNNQ
4.1.3 Aluminum Oxide
4.2 Fabrication
4.2.1 Thermal Vapor Deposition
4.2.2 Chamber Details and Processing Procedure
4.2.3 Sample Structure
4.3 Characterization Methods and Tools
4.3.1 Electrical Characterization
4.3.2 Morphology
4.3.3 XPS
5 Simulations and Working Mechanism
5.1 Simulation Setup
5.1.1 Overview
5.1.2 OPBT Model
5.1.3 Drift-Diffusion Solver
5.1.4 Post-Processing of Simulation Data
5.2 Basic Concept
5.2.1 Base Sweep Regions
5.2.2 Correlation with charge carrier density and potential
5.3 Charge Carrier Accumulation
5.3.1 Accumulation at Emitter and Collector
5.3.2 Current Flow
5.3.3 Area contributing to the current flow
5.4 Current Limitation Mechanisms
5.4.1 Varying Size of the Opening
5.4.2 Channel Potential
5.4.3 Limitation of Base-Emitter Transport
5.4.4 Intrinsic Layer Variation
5.5 Opening Shapes
5.5.1 Cylindrical Opening and Symmetry
5.5.2 Truncated Cone Setup
5.6 Base Leakage Currents
5.6.1 Description of the Insulator
5.6.2 Top and Bottom Contribution
5.6.3 Validity of Calculation
5.7 Analytical Description of the OPBT base sweep
5.7.1 Description of operation regions
5.7.2 Transition Voltages and Full Characteristics
5.7.3 Comparison to Experiment
5.8 Output Characteristics
5.8.1 Saturation region
5.8.2 Linear region
5.8.3 Intrinsic Gain
5.9 Summary of Operation Mechanism
6 Nin-Devices and Structuring
6.1 Effect of Accumulation and Scalability
6.1.1 Active Area and Electrode Overlap
6.1.2 Indirect Structuring
8 Contents
6.1.3 Four-Wire Measurement
6.1.4 Pulsed Measurements
6.2 Mobility Measurement
6.2.1 Mobility Extraction from a Single IV Curve
6.2.2 Verification of the SCLC using Thickness Variations
6.3 Geometric Diode
7 Optimization of p-type Permeable Base Transistors
7.1 Introduction to p-type Devices
7.2 Characteristics of OPBTs
7.2.1 Diode characteristics
7.2.2 Base sweep
7.2.3 Output characteristics
7.3 Seed-Layer
7.3.1 Process of Opening Formation
7.3.2 Performance using different Seed-Layers
7.4 Built-in field
7.4.1 Effect on Performance
7.4.2 Explanation for the Transmission Improvement
7.5 Base Insulation
7.5.1 Importance of Base Insulation
7.5.2 Additional Insulating Layers and Positioning
7.5.3 Enhancement of Native Aluminum Oxide
7.6 Complete Optimization
7.6.1 Indirect Structuring in OPBTs
7.6.2 Combination of different Optimization Techniques
7.7 Potential of the Technology
7.7.1 Future Improvements
7.7.2 Achievable Performance
7.8 Demonstration of the Organic Permeable Base Transistor
7.8.1 Simple OLED driver
7.8.2 An Astable Oscillator using p-type OPBTs
7.8.3 An OLED Driver using n-type OPBTs controlled by Organic Solar Cells
8 Conclusion
|
Page generated in 0.12 seconds