• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 135
  • 135
  • 135
  • 65
  • 56
  • 28
  • 26
  • 26
  • 22
  • 21
  • 21
  • 20
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Energy Demand Response for High-Performance Computing Systems

Ahmed, Kishwar 22 March 2018 (has links)
The growing computational demand of scientific applications has greatly motivated the development of large-scale high-performance computing (HPC) systems in the past decade. To accommodate the increasing demand of applications, HPC systems have been going through dramatic architectural changes (e.g., introduction of many-core and multi-core systems, rapid growth of complex interconnection network for efficient communication between thousands of nodes), as well as significant increase in size (e.g., modern supercomputers consist of hundreds of thousands of nodes). With such changes in architecture and size, the energy consumption by these systems has increased significantly. With the advent of exascale supercomputers in the next few years, power consumption of the HPC systems will surely increase; some systems may even consume hundreds of megawatts of electricity. Demand response programs are designed to help the energy service providers to stabilize the power system by reducing the energy consumption of participating systems during the time periods of high demand power usage or temporary shortage in power supply. This dissertation focuses on developing energy-efficient demand-response models and algorithms to enable HPC system's demand response participation. In the first part, we present interconnection network models for performance prediction of large-scale HPC applications. They are based on interconnected topologies widely used in HPC systems: dragonfly, torus, and fat-tree. Our interconnect models are fully integrated with an implementation of message-passing interface (MPI) that can mimic most of its functions with packet-level accuracy. Extensive experiments show that our integrated models provide good accuracy for predicting the network behavior, while at the same time allowing for good parallel scaling performance. In the second part, we present an energy-efficient demand-response model to reduce HPC systems' energy consumption during demand response periods. We propose HPC job scheduling and resource provisioning schemes to enable HPC system's emergency demand response participation. In the final part, we propose an economic demand-response model to allow both HPC operator and HPC users to jointly reduce HPC system's energy cost. Our proposed model allows the participation of HPC systems in economic demand-response programs through a contract-based rewarding scheme that can incentivize HPC users to participate in demand response.
82

Cyber Profiling for Insider Threat Detection

Udoeyop, Akaninyene Walter 01 August 2010 (has links)
Cyber attacks against companies and organizations can result in high impact losses that include damaged credibility, exposed vulnerability, and financial losses. Until the 21st century, insiders were often overlooked as suspects for these attacks. The 2010 CERT Cyber Security Watch Survey attributes 26 percent of cyber crimes to insiders. Numerous real insider attack scenarios suggest that during, or directly before the attack, the insider begins to behave abnormally. We introduce a method to detect abnormal behavior by profiling users. We utilize the k-means and kernel density estimation algorithms to learn a user’s normal behavior and establish normal user profiles based on behavioral data. We then compare user behavior against the normal profiles to identify abnormal patterns of behavior.
83

Cyber Profiling for Insider Threat Detection

Udoeyop, Akaninyene Walter 01 August 2010 (has links)
Cyber attacks against companies and organizations can result in high impact losses that include damaged credibility, exposed vulnerability, and financial losses. Until the 21st century, insiders were often overlooked as suspects for these attacks. The 2010 CERT Cyber Security Watch Survey attributes 26 percent of cyber crimes to insiders. Numerous real insider attack scenarios suggest that during, or directly before the attack, the insider begins to behave abnormally. We introduce a method to detect abnormal behavior by profiling users. We utilize the k-means and kernel density estimation algorithms to learn a user’s normal behavior and establish normal user profiles based on behavioral data. We then compare user behavior against the normal profiles to identify abnormal patterns of behavior.
84

Automatic Detection of Abnormal Behavior in Computing Systems

Roberts, James Frank 01 January 2013 (has links)
I present RAACD, a software suite that detects misbehaving computers in large computing systems and presents information about those machines to the system administrator. I build this system using preexisting anomaly detection techniques. I evaluate my methods using simple synthesized data, real data containing coerced abnormal behavior, and real data containing naturally occurring abnormal behavior. I find that the system adequately detects abnormal behavior and significantly reduces the amount of uninteresting computer health data presented to a system administrator.
85

Co-design of Security Aware Power System Distribution Architecture as Cyber Physical System

Youssef, Tarek 06 April 2017 (has links)
The modern smart grid would involve deep integration between measurement nodes, communication systems, artificial intelligence, power electronics and distributed resources. On one hand, this type of integration can dramatically improve the grid performance and efficiency, but on the other, it can also introduce new types of vulnerabilities to the grid. To obtain the best performance, while minimizing the risk of vulnerabilities, the physical power system must be designed as a security aware system. In this dissertation, an interoperability and communication framework for microgrid control and Cyber Physical system enhancements is designed and implemented taking into account cyber and physical security aspects. The proposed data-centric interoperability layer provides a common data bus and a resilient control network for seamless integration of distributed energy resources. In addition, a synchronized measurement network and advanced metering infrastructure were developed to provide real-time monitoring for active distribution networks. A hybrid hardware/software testbed environment was developed to represent the smart grid as a cyber-physical system through hardware and software in the loop simulation methods. In addition it provides a flexible interface for remote integration and experimentation of attack scenarios. The work in this dissertation utilizes communication technologies to enhance the performance of the DC microgrids and distribution networks by extending the application of the GPS synchronization to the DC Networks. GPS synchronization allows the operation of distributed DC-DC converters as an interleaved converters system. Along with the GPS synchronization, carrier extraction synchronization technique was developed to improve the system’s security and reliability in the case of GPS signal spoofing or jamming. To improve the integration of the microgrid with the utility system, new synchronization and islanding detection algorithms were developed. The developed algorithms overcome the problem of SCADA and PMU based islanding detection methods such as communication failure and frequency stability. In addition, a real-time energy management system with online optimization was developed to manage the energy resources within the microgrid. The security and privacy were also addressed in both the cyber and physical levels. For the physical design, two techniques were developed to address the physical privacy issues by changing the current and electromagnetic signature. For the cyber level, a security mechanism for IEC 61850 GOOSE messages was developed to address the security shortcomings in the standard.
86

On the Performance Evaluation of High-Speed Transport Protocols

Hillyer, Bridget 01 January 2006 (has links)
As high-speed networks with large bandwidth delay products (BDP) become more common, high-speed transport protocols must be developed that perform well in these contexts. TCP has limitations in high BDP networks. A number of high-speed TCP proposals have emerged, including BIC TCP, High Speed TCP, and H-TCP. XCP is an intraprotocol communication mechanism that promises even greater performance by providing explicit feedback from routers about congestion. It requires changes to routers and end hosts, though, whereas the other experimental protocols only require changes to an end host. We evaluated the performance ofXCP against BIC TCP, High Speed TCP, H-TCP, and . NewReno TCP. We found that in a controlled environment, XCP gave much better performance than the other TCPs. XCP was sensitive to misconfiguration and environmental factors, though, and was more difficult to deploy. More work is required to make XCP more stable. The other TCPs did not perform better than NewReno TCP but show promise, as most performed almost as well as NewReno TCP.
87

Trajectory Privacy Preservation in Mobile Wireless Sensor Networks

Jin, Xinyu 23 October 2013 (has links)
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.
88

WebSAT: Web-based systems administration tool

Jeong, Juyong 01 January 2005 (has links)
Discusses the development of WebSAT (Web-based systems administration tool), a computer network tool that allows systems administrators to create and delete accounts, disable and enable existing accounts, manage disk space conveniently, monitor the status of all network printers, and monitor network security. The WebSAT application was implemented using PHP, a server-side embedded scripting language, with a MySQL database.
89

Scalable Cognitive Radio Network Testbed in Real Time

Yu, Kevin Z 01 June 2021 (has links) (PDF)
Modern society places an increasingly high demand on data transmission. Much of that data transmission takes place through communication over the frequency spectrum. The channels on the spectrum are limited resources. Researchers realize that at certain times of day some channels are overloaded, while others are not being fully utilized. A spectrum management system may be beneficial to remedy this efficiency issue. One of the proposed systems, Cognitive Radio Network (CRN), has progressed over the years thanks to studies on a wide range of subjects, including geolocation, data throughput rate, and channel handoff selection algorithm, which provide fundamental support for the spectrum management system. To move CRN technology forward, in this thesis we propose a physical, scalable testbed for some of the extant CRN methodologies. This testbed integrates IEEE standards, FCC guidelines, and other TV band regulations to emulate CRN in real time. With careful component selections, we include sufficient operational functionalities in the system, while at the same time making sure it remains affordable. We evaluate the technical feasibility of the testbed by studying several simple CRN logics. When comparing a system with a selection table implemented to those with naive selection methods, there is more than a 60 percent improvement in the overall performance.
90

Low-Cost UAV Swarm for Real-Time Object Detection Applications

Valdovinos Miranda, Joel 01 June 2022 (has links) (PDF)
With unmanned aerial vehicles (UAVs), also known as drones, becoming readily available and affordable, applications for these devices have grown immensely. One type of application is the use of drones to fly over large areas and detect desired entities. For example, a swarm of drones could detect marine creatures near the surface of the ocean and provide users the location and type of animal found. However, even with the reduction in cost of drone technology, such applications result costly due to the use of custom hardware with built-in advanced capabilities. Therefore, the focus of this thesis is to compile an easily customizable, low-cost drone design with the necessary hardware for autonomous behavior, swarm coordination, and on-board object detection capabilities. Additionally, this thesis outlines the necessary network architecture to handle the interconnection and bandwidth requirements of the drone swarm. The drone on-board system uses a PixHawk 4 flight controller to handle flight mechanics, a Raspberry Pi 4 as a companion computer for general-purpose computing power, and a NVIDIA Jetson Nano Developer Kit to perform object detection in real-time. The implemented network follows the 802.11s standard for multi-hop communications with the HWMP routing protocol. This topology allows drones to forward packets through the network, significantly extending the flight range of the swarm. Our experiments show that the selected hardware and implemented network can provide direct point-to-point communications at a range of up to 1000 feet, with extended range possible through message forwarding. The network also provides sufficient bandwidth for bandwidth intensive data such as live video streams. With an expected flight time of about 17 minutes, the proposed design offers a low-cost drone swarm solution for mid-range aerial surveillance applications.

Page generated in 0.1412 seconds