• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 12
  • 2
  • Tagged with
  • 40
  • 40
  • 16
  • 15
  • 9
  • 9
  • 9
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Digital Microfluidics for Multidimensional Biology

Eydelnant, Irwin Adam 09 January 2014 (has links)
Digital microfluidics (DMF) has emerged in the past decade as a novel microfluidic paradigm. As a liquid handling technology, DMF facilitates the electrostatic manipulation of discrete nano- and micro- litre droplets across open electrode arrays providing the advantages of single sample addressability, automation, and parallelization. This thesis presents DMF advances toward improved functionality and compatibility for automated miniaturized cell culture in two and three dimensions. Through the development and integration of surface patterning techniques we demonstrate a virtual microwell method for high precision on-device reagent dispensing in one and two plate DMF geometries. These methods are shown to be compatible with two-dimensional culture of immortalized cell lines on ITO, primary cells on coated surfaces, and for co-culture assays. We further extrapolate this method for the formation of microgels on-demand where form micro scale hydrogel structures through passive dispensing in a wide array of geometries. With this system we interrogate three-dimensional cell culture models, specifically for the recapitulation of kidney epthelialization and the analysis of functional cardiac microgels.
22

Polymer Microresonator Sensors Embedded in Digital Electrowetting on Dielectric Microfluidics Systems

Royal, Matthew White January 2012 (has links)
<p>Integrated sensing systems are designed to address a variety of problems, including clinical diagnosis, water quality testing, and air quality testing. The growing prevalence of tropical diseases in the developing world, such as malaria, trypanosomiasis (sleeping sickness), and tuberculosis, provides a clear and present impetus for portable, low cost diagnostics both to improve treatment outcomes and to prevent the development of drug resistance in a population. The increasing scarcity of available clean, fresh water, especially noticeable in the developing world, also presents a motivation for low-cost water quality diagnostic tools to prevent exposure of people to contaminated water supplies and to monitor those water supplies to effectively mitigate their contamination. In the developed world, the impact of second-hand cigarette smoke is receiving increased attention, and measuring its effects on public health have become a priority. The `point-of-need' technologies required to address these sensing problems cannot achieve a widespread and effective level of use unless low-cost, small form-factor, portable sensing devices can be realized. Optical sensors based on low cost polymer materials have the potential to address the aforementioned `point-of-need' sensing problems by leveraging low-cost materials and fabrication processes. For portable clinical diagnostics and water quality testing in particular, on-chip sample preparation is a necessity. Electrowetting-on-dielectric (EWD) technology is an enabling technology for chip-scale sample preparation, due to its very low power consumption compared to other microfluidics technologies and the ability to move fluids without bulky external pumps. Potentially, these technologies could be combined into a cell phone sized portable sensing device.</p><p>Towards the goal of developing a portable diagnostic device using EWD microfluidics with an embedded polymer microresonator sensor, this thesis describes a viable fabrication process for the system and explores the design trade-offs of such a system. The main design challenges for this system are optimization of the sensor's limit-of-detection, minimization of the insertion loss of the optical system, and maintaining the ability to actuate droplets onto and off of the sensor embedded in the microfluidic system. The polymer microresonator sensor was designed to optimize the limit-of-detection (LOD) using SU-8 polymer as the bus waveguide and microresonator material and SiO2 as the substrate cladding material. The fabrication process and methodology were explored with test devices using a tunable laser system working around a wavelength of 1550 nm using glucose solutions as a refractive index standard. This sensor design was then utilized to embed the sensor and bus waveguides into an EWD top plate in order to minimize the impact of the sensor integration on microfluidic operations. Finally, the performance of the embedded sensor embedded was evaluated in the same manner and compared to the performance of the sensor without the microfluidic system.</p><p>The primary result of this research was the successful demonstration of a high performance polymer microresonator sensor embedded in the top plate of an electrowetting microfluidic device. The embedded sensor had the highest reported figure-of-merit for any microresonator integrated with electrowetting microfluidics. The embedded microresonator sensor was also the first fully-embedded microresonator in an EWD system. Because the sensor was embedded in the top plate, full functionality of the EWD system was maintained, including the ability to move droplets onto and off of the sensor and to address the sensor with single droplets. Furthermore, the highest figure-of-merit for an SU-8 microresonator sensor yet reported at a probe wavelength of 1550 nm was measured on a test device fabricated with the embedded sensor structure described herein. Optimization of the sensor sensitivity utilized recently developed waveguide sensor design theory, which accurately predicted the measured sensitivity of the sensors. Altogether, the results show that embedding of a microresonator sensor in an EWD microfluidics system is a viable approach to develop a portable diagnostic system with the high efficiency sample preparation capability provided by EWD microfluidics and the versatile sensing capability of the microresonator sensor.</p> / Dissertation
23

New Microfluidic Platforms for Cell Studies

Barbulovic-Nad, Irena 07 March 2011 (has links)
Biological cell manipulation and analysis is one of the most investigated applications of microfluidics. In the last decade, researchers have developed means to handle and sort cells, isolate and study single cells, assay whole and lysed cells, and transfect and electroporate in microchannels. Much of this work was motivated by the observation that many external forces and fields scale favorably in the micro-regime; this is especially the case for the electrical field. This dissertation investigates further integration of electrical forces with microfluidic devices, both channel- and droplet-based, in order to generate new, flexible and more efficient tools for studying cell biology. The first part of the dissertation (Chapter 3) explores a new dielectrophoretic particle separation method in microchannels. Current electrodeless dielectrophoretic (DEP) separation techniques utilize insulating solid obstacles in a direct current (DC) or low-frequency alternating current (AC) field, while this novel method employs an oil droplet acting as an insulating hurdle between two electrodes. Since the size of the droplet can be dynamically changed, the electric field gradient, and hence DEP force, becomes easily controllable and adjustable to various separation parameters. Very effective separation at the low field strength suggests that this method can also be applied to a separation of biological cells that are not sensitive to low electric potential. The second, larger part of the dissertation (Chapters 4 and 5) is focused on digital microfluidics (DMF), which is used to actuate nanoliter droplets of reagents and cells on a planar array of electrodes. It was demonstrated for the first time that DMF can be used as a method for cell culture and analysis. Several cell-based applications were implemented in DMF format including long-term culture, cell passaging, assaying and transfection. The data presented here suggest advanced performance of DMF techniques relative to standard macro-scale techniques. Cell analysis using DMF was found to be advantageous because of greatly reduced reagent and cell use, increased sensitivity, and the potential for multiplexing. Also, DMF technique for cell passaging demonstrated faster and more straightforward manipulation of cells than the standard techniques. In addition, no adverse effects of actuation by DMF were observed in assays for cell viability, proliferation, and biochemistry. The new DMF platform for long-term mammalian cell culture represents the first microfluidic implementation of any kind of all of the steps required for mammalian cell culture – cell seeding, growth, detachment, and re-seeding on a fresh surface. In addition, it is the first demonstration of long-term cell culture in nanoliter droplets. Cells handled in this manner exhibited growth characteristics and morphology comparable to those cultured in standard tissue culture vessels. We anticipate that the DMF cell culture and analysis techniques presented here will be useful in myriad applications that would benefit from automated mammalian cell culture.
24

Digital Microfluidics: A Versatile Platform For Applications in Chemistry, Biology and Medicine

Jebrail, Mais J. 31 August 2011 (has links)
Digital microfluidics (DMF) has recently emerged as a popular technology for a wide range of applications. In DMF, nL-mL droplets containing samples and reagents are controlled(i.e., moved, merged, mixed, and dispensed from reservoirs) by applying a series of electrical potentials to an array of electrodes coated with a hydrophobic insulator. DMF is distinct from microchannel-based fluidics as it allows for precise control over multiple reagent phases (liquid and solid) in heterogeneous systems with no need for complex networks of microvalves. In this thesis, digital microfluidics has been applied to address key challenges in the fields of chemistry, biology and medicine. For applications in chemistry, the first two-plate digital microfluidic platform for synchronized chemical synthesis is reported. The new method, which was applied to synthesizing peptide macrocycles, is fast and amenable to automation, and is convenient for parallel scale fluid handling in a straightforward manner. For applications in biology, I present the first DMF-based method for extraction of proteins (via precipitation) in serum and cell lysate. The performance of the new method was comparable to that of conventional techniques, with the advantages of automation and reduced analysis time. The results suggest great potential for digital microfluidics for proteomic biomarker discovery. Furthermore, I integrated DMF with microchannels for in-line biological sample processing and separations. Finally, for applications in medicine, I developed the first microfluidic method for sample clean-up and extraction of estrogen from one-microliter droplets of breast tissue homogenates, blood, and serum. The new method is fast and automated, and features >1000x reduction in sample use relative to conventional techniques. This method has significant potential for applications in endocrinology and breast cancer risk reduction. In addition, I describe a new microfluidic system incorporating a digital microfluidic platform for on-chip blood spotting and processing, and a microchannel emitter for direct analysis by mass spectrometry. The new method is fast, robust, precise, and is capable of quantifying analytes associated with common congenital disorders such as homocystinuria, phenylketonuria, and tyrosinemia.
25

New Microfluidic Platforms for Cell Studies

Barbulovic-Nad, Irena 07 March 2011 (has links)
Biological cell manipulation and analysis is one of the most investigated applications of microfluidics. In the last decade, researchers have developed means to handle and sort cells, isolate and study single cells, assay whole and lysed cells, and transfect and electroporate in microchannels. Much of this work was motivated by the observation that many external forces and fields scale favorably in the micro-regime; this is especially the case for the electrical field. This dissertation investigates further integration of electrical forces with microfluidic devices, both channel- and droplet-based, in order to generate new, flexible and more efficient tools for studying cell biology. The first part of the dissertation (Chapter 3) explores a new dielectrophoretic particle separation method in microchannels. Current electrodeless dielectrophoretic (DEP) separation techniques utilize insulating solid obstacles in a direct current (DC) or low-frequency alternating current (AC) field, while this novel method employs an oil droplet acting as an insulating hurdle between two electrodes. Since the size of the droplet can be dynamically changed, the electric field gradient, and hence DEP force, becomes easily controllable and adjustable to various separation parameters. Very effective separation at the low field strength suggests that this method can also be applied to a separation of biological cells that are not sensitive to low electric potential. The second, larger part of the dissertation (Chapters 4 and 5) is focused on digital microfluidics (DMF), which is used to actuate nanoliter droplets of reagents and cells on a planar array of electrodes. It was demonstrated for the first time that DMF can be used as a method for cell culture and analysis. Several cell-based applications were implemented in DMF format including long-term culture, cell passaging, assaying and transfection. The data presented here suggest advanced performance of DMF techniques relative to standard macro-scale techniques. Cell analysis using DMF was found to be advantageous because of greatly reduced reagent and cell use, increased sensitivity, and the potential for multiplexing. Also, DMF technique for cell passaging demonstrated faster and more straightforward manipulation of cells than the standard techniques. In addition, no adverse effects of actuation by DMF were observed in assays for cell viability, proliferation, and biochemistry. The new DMF platform for long-term mammalian cell culture represents the first microfluidic implementation of any kind of all of the steps required for mammalian cell culture – cell seeding, growth, detachment, and re-seeding on a fresh surface. In addition, it is the first demonstration of long-term cell culture in nanoliter droplets. Cells handled in this manner exhibited growth characteristics and morphology comparable to those cultured in standard tissue culture vessels. We anticipate that the DMF cell culture and analysis techniques presented here will be useful in myriad applications that would benefit from automated mammalian cell culture.
26

Digital Microfluidics: A Versatile Platform For Applications in Chemistry, Biology and Medicine

Jebrail, Mais J. 31 August 2011 (has links)
Digital microfluidics (DMF) has recently emerged as a popular technology for a wide range of applications. In DMF, nL-mL droplets containing samples and reagents are controlled(i.e., moved, merged, mixed, and dispensed from reservoirs) by applying a series of electrical potentials to an array of electrodes coated with a hydrophobic insulator. DMF is distinct from microchannel-based fluidics as it allows for precise control over multiple reagent phases (liquid and solid) in heterogeneous systems with no need for complex networks of microvalves. In this thesis, digital microfluidics has been applied to address key challenges in the fields of chemistry, biology and medicine. For applications in chemistry, the first two-plate digital microfluidic platform for synchronized chemical synthesis is reported. The new method, which was applied to synthesizing peptide macrocycles, is fast and amenable to automation, and is convenient for parallel scale fluid handling in a straightforward manner. For applications in biology, I present the first DMF-based method for extraction of proteins (via precipitation) in serum and cell lysate. The performance of the new method was comparable to that of conventional techniques, with the advantages of automation and reduced analysis time. The results suggest great potential for digital microfluidics for proteomic biomarker discovery. Furthermore, I integrated DMF with microchannels for in-line biological sample processing and separations. Finally, for applications in medicine, I developed the first microfluidic method for sample clean-up and extraction of estrogen from one-microliter droplets of breast tissue homogenates, blood, and serum. The new method is fast and automated, and features >1000x reduction in sample use relative to conventional techniques. This method has significant potential for applications in endocrinology and breast cancer risk reduction. In addition, I describe a new microfluidic system incorporating a digital microfluidic platform for on-chip blood spotting and processing, and a microchannel emitter for direct analysis by mass spectrometry. The new method is fast, robust, precise, and is capable of quantifying analytes associated with common congenital disorders such as homocystinuria, phenylketonuria, and tyrosinemia.
27

A Digital Microfluidic Platform for Human Plasma Protein Depletion

Mei, NINGSI 29 May 2014 (has links)
Digital microfluidics (DMF) is an emerging liquid-handling technique that facilitates manipulation of discrete droplets across an array of electrodes. Although the working principle of droplet movement is still under debate, it has gained significant interest as the technique has been applied to various applications in biology, chemistry and medicine. With recent advances in rapid prototyping and multilayer fabrication techniques using printed circuit boards, DMF has become an attractive and alternative solution to conventional macroscale fluidics techniques with additional capability of sample size reduction, faster analysis time, full automation, and multiplexing. In this thesis, we explore the use of DMF for human plasma protein depletion due to its multiple advantages. The high abundance of human serum albumin (HSA) and immunoglobulins (Igs), which constitute 80% of total plasma proteins, is a major challenge in proteome studies. Unfortunately, conventional methods to deplete high abundant proteins (e.g. macro LC-columns) are labour-intensive, require dilution of sample, and run the risk of sample loss. Furthermore, most techniques lack the ability to process multiple samples simultaneously. Hence, we developed a new method of protein depletion using anti-HSA and Protein A/G immobilized paramagnetic beads manipulated by DMF to deplete HSA and IgG from human plasma. Toward this goal, prototype DMF devices and electronic controller were designed, built and characterized (Chapter 2). Preliminary depletion experiments were first optimized in-tubes and then adapted for DMF manually (Chapter 3). At last, the entire depletion process was performed on DMF using an automated controller system (Chapter 4). Results showed that the protein depletion efficiency for immunoglobulin G (IgG) and HSA in 10 minutes for four samples simultaneously was as high as 98%, and an approximately 3-fold increase in signal-to-noise ratio after depletion was demonstrated by MALDI-MS analysis. The depletion process is sufficient for a tryptic digest to be performed on a model protein, cytochrome C, where 89% sequence coverage was obtained for a depleted sample. Although some improvements such as on-chip sample processing (e.g. digestion) need to be carried out as future work, we anticipate that the new technique is a significant alternative for applications involving protein depletion steps. / Thesis (Master, Chemistry) -- Queen's University, 2014-05-29 02:38:50.176
28

Accelerated Sepsis Diagnosis by Seamless Integration of Nucleic Acid Purification and Detection

Hsu, Bang-Ning January 2014 (has links)
<p><bold>Background</bold> The diagnosis of sepsis is challenging because the infection can be caused by more than 50 species of pathogens that might exist in the bloodstream in very low concentrations, e.g., less than 1 colony-forming unit/ml. As a result, among the current sepsis diagnostic methods there is an unsatisfactory trade-off between the assay time and the specificity of the derived diagnostic information. Although the present qPCR-based test is more specific than biomarker detection and faster than culturing, its 6 ~ 10 hr turnaround remains suboptimal relative to the 7.6%/hr rapid deterioration of the survival rate, and the 3 hr hands-on time is labor-intensive. To address these issues, this work aims to utilize the advances in microfluidic technologies to expedite and automate the ``nucleic acid purification - qPCR sequence detection'' workflow.</p><p><bold>Methods and Results</bold> This task is evaluated to be best approached by combining immiscible phase filtration (IPF) and digital microfluidic droplet actuation (DM) on a fluidic device. In IPF, as nucleic acid-bound magnetic beads are transported from an aqueous phase to an immiscible phase, the carryover of aqueous contaminants is minimized by the high interfacial tension. Thus, unlike a conventional bead-based assay, the necessary degree of purification can be attained in a few wash steps. After IPF reduces the sample volume from a milliliter-sized lysate to a microliter-sized eluent, DM can be used to automatically prepare the PCR mixture. This begins with compartmenting the eluent in accordance with the desired number of multiplex qPCR reactions, and then transporting droplets of the PCR reagents to mix with the eluent droplets. Under the outlined approach, the IPF - DM integration should lead to a notably reduced turnaround and a hands-free ``lysate-to-answer'' operation.</p><p>As the first step towards such a diagnostic device, the primary objective of this thesis is to verify the feasibility of the IPF - DM integration. This is achieved in four phases. First, the suitable assays, fluidic device, and auxiliary systems are developed. Second, the extent of purification obtained per IPF wash, and hence the number of washes needed for uninhibited qPCR, are estimated via off-chip UV absorbance measurement and on-chip qPCR. Third, the performance of on-chip qPCR, particularly the copy number - threshold cycle correlation, is characterized. Lastly, the above developments accumulate to an experiment that includes the following on-chip steps: DNA purification by IPF, PCR mixture preparation via DM, and target quantification using qPCR - thereby demonstrating the core procedures in the proposed approach.</p><p><bold>Conclusions</bold> It is proposed to expedite and automate qPCR-based multiplex sparse pathogen detection by combining IPF and DM on a fluidic device. As a start, this work demonstrated the feasibility of the IPF - DM integration. However, a more thermally robust device structure will be needed for later quantitative investigations, e.g., improving the bead - buffer mixing. Importantly, evidences indicate that future iterations of the IPF - DM fluidic device could reduce the sample-to-answer time by 75% to 1.5 hr and decrease the hands-on time by 90% to approximately 20 min.</p> / Dissertation
29

Applications and Advancements of Dynamic Isoelectric Focusing

Wilson, Shannon Courtney 01 May 2014 (has links)
The work in the dissertation expands the applications of DIEF and describes the development of incorporating DIEF in a microfluidic chip to create a comprehensive proteomics tool. Proof-of-concept DIEF experiments have been done previously, so the focus of this work is to explore the capabilities of DIEF. Dynamic isoelectric focusing (DIEF) is a separation technique invented by Dr. Luke Tolley. It is similar to capillary isoelectric focusing except it uses four high voltage electrodes to form a pH gradient instead of only two. The additional two electrodes are able to manipulate the pH gradient resulting in selection of the region and of the range of pH within a pre-defined sampling or extraction point. One of the first applications described for DIEF was to isolate a single protein from a complex mixture. The protein isolated was a cellulase enzyme capable of degrading multiple cellulose materials over a wide range of environmental conditions. DIEF did isolate the protein in a pH span of 0.005 which is equivalent to 0.075% of the total pH range. Fractions were collected for sequencing analysis, but the fractions were contaminated with keratin both times. DIEF was also successfully performed in an open air channel. Though other electromigration techniques have been successfully done in open air channels, these techniques were severely time and pH limited. In contrast, DIEF in an open air channel is capable of using the entire 3-10 pH range and can perform isolations until the proteins are completely separated. The device developed was also an improvement on increasing sample capacity. The channel was significantly bigger than the traditional glass capillaries used. Since the channel was open, fraction collection was made simpler by collecting using a pipette. This work also demonstrated that DIEF can be made through the use of silicone molding compounds and polyurethane. The amount of milling needed is reduced, the pieces are produced quickly, and a single mold can produce several pieces. Machining pieces with fragile bits is not needed to be done as much since only one acrylic piece is required produce a mold. The mold can produce several polyurethane pieces. This fabrication method has proven useful for making DIEF holders. The next step was to make DIEF a truly comprehensive proteomic tool by incorporating it into a microfluidic chip. Multiple sample fractions are rapidly generated on chip through the use of multiple bubbles simultaneously injected into the separation channel. This stops the separation and, since each droplet is isolated from others by a bubble on each side, the protein peaks are not able to broaden. This novel use of digital microfluidics is still a work in progress, but the fundamentals have been demonstrated. The fabrication protocol for making molds and PDMS casts was developed using materials and procedures that can be done in a common laboratory environment. DIEF is a separation technique still in its infancy, with a wide variety of available applications. DIEF will continue to be tested in other areas and developed into a comprehensive proteomic tool.
30

Migration de gouttes en microfluidique : caractérisation et applications / Microfluidics droplet migration : characterization and applications

Huerre, Axel 23 September 2015 (has links)
La microfluidique utilisant les gouttes a connu un essor remarquable ces dix dernières années. Pourtant, la dynamique de ces objets reste largement inexplorée et incomprise. Une question aussi simple que déterminer la vitesse d’une goutte poussée par une phase porteuse à vitesse imposée, ne possède à ce jour toujours pas de réponse. Comprendre et modéliser la vitesse d’une goutte nécessite dans un premier temps de caractériser les mécanismes de dissipation intervenant dans la goutte, dans le ménisque dynamique et dans le film de lubrification.Ce manuscrit présente une étude de la dynamique de films de lubrification en utilisant une technique interférométrique (RICM) qui a dû être adaptée à notre système. Nous montrons dans un premier temps que, dans un cas statique, cette outil permet de mesurer l’épaisseur de ce film nanométrique avec une très grande précision, et que celle-ci est fixée par la pression de disjonction dont la composante principale est électrostatique. Puis, le film de lubrification est étudié dans un cas dynamique. Aux faibles vitesses, l’épaisseur du film est fixée par la pression de disjonction, tandis qu’aux nombres capillaires plus élevés nous montrons qu’un modèle visqueux permet de reproduire nos résultats expérimentaux. Pour une solution micellaire,nous observons une décomposition spinodale permettant d’extraire des propriétés interfaciales (vitesse, contrainte de Marangoni). Enfin, nous avons pu dans un projet fédératif développer une laboratoire sur puce permettant des opérations de manipulation sur des gouttes en utilisant l’intégration de systèmes de chauffage au niveau micrométrique. / Digital microfluidics is a growing field of research. However, droplet dynamics remains largely unknown. As an example, a question as simple as predicting the droplet velocity while pushed by an external fluid at fixed velocity is still not answered. Understanding and thus modelizing it requires the identification of dissipation mechanisms in the droplet, in the dynamical meniscus and in the flat film. This thesis presents a study on the dynamical properties of lubrication films using an interferometric method (RICM) that has been adapted to microfluidics. We first show that, in a static case, we are able to measure nanometric film thicknesses with very accurate precision and that it is set by the disjoining pressure, especially the electrostatic part. Then the film is studied when the droplets flow. At low speeds, the film thickness is set by the disjoining pressure, while at higher capilarry numbers we identify a viscous model in agreement with our experimental results. For a micellar solution, we observe spinodal decomposition allowing us to recover interfacial properties (velocity, Marangoni stress). Finally, in a collaborative project, we were able to develop a lab on a chip allowing droplets manipulations taking advantage of micro-heaters integration.

Page generated in 0.0493 seconds