• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the Use of Digital Twins to Optimize Waste Collection Routes : A holistic approach towards unlocking the potential of IoT and AI in waste management / Undersökning av användningen av digitala tvillingar för optimering av sophämtningsrutter : Ett holistiskt tillvägagångssätt för att ta del av potentialen för IoT och AI i sophantering

Medehal, Aarati January 2023 (has links)
Solid waste management is a global issue that affects everyone. The management of waste collection routes is a critical challenge in urban environments, primarily due to inefficient routing. This thesis investigates the use of real-time virtual replicas, namely Digital Twins to optimize waste collection routes. By leveraging the capabilities of digital twins, this study intends to improve the effectiveness and efficiency of waste collection operations. The ‘gap’ that the study aims to uncover is hence at the intersection of smart cities, Digital Twins, and waste collection routing. The research methodology comprises of three key components. First, an exploration of five widely used metaheuristic algorithms provides a qualitative understanding of their applicability in vehicle routing, and consecutively waste collection route optimization. Building on this foundation, a simple smart routing scenario for waste collection is presented, highlighting the limitations of a purely Internet of Things (IoT)-based approach. Next, the findings from this demonstration motivate the need for a more data-driven and intelligent solution, leading to the introduction of the Digital Twin concept. Subsequently, a twin framework is developed, which encompasses the technical anatomy and methodology required to create and utilize Digital Twins to optimize waste collection, considering factors such as real-time data integration, predictive analytics, and optimization algorithms. The outcome of this research contributes to the growing concept of smart cities and paves the way toward practical implementations in revolutionizing waste management and creating a sustainable future. / Sophantering är ett globalt problem som påverkar alla, och hantering av sophämtningsrutter är en kritisk utmaning i stadsmiljöer. Den här avhandlingen undersöker användningen av virtuella kopior i realtid, nämligen digitala tvillingar, för att optimera sophämtningsrutter. Genom att utnyttja digitala tvillingars förmågor, avser den här studien att förbättra effektiviteten av sophämtning. Forskningsmetoden består av tre nyckeldelar. Först, en undersökning av fem välanvända Metaheuristika algoritmer som ger en kvalitativ förståelse av deras applicerbarhet i fordonsdirigering och således i optimeringen av sophämtningsrutter. Baserat på detta presenteras ett enkelt smart ruttscenario för sophämtning som understryker bristerna av att bara använda Internet of Things (IoT). Sedan motiverar resultaten av demonstrationen nödvändigheten för en mer datadriven och intelligent lösning, vilket leder till introduktionen av konceptet med digitala tvillingar. Därefter utvecklas ett ramverk för digitala tvillingar som omfattar den tekniska anatomin och metod som krävs för att skapa och använda digitala tvillingar för att optimera sophämtningsrutter. Dessa tar i beaktning faktorer såsom realtidsdataintegrering, prediktiv analys och optimeringsalgoritmer. Slutsatserna av studien bidrar till det växande konceptet av smarta städer och banar väg för praktisk implementation i revolutionerande sophantering och för skapandet för en hållbar framtid.

Page generated in 0.091 seconds