Spelling suggestions: "subject:"4digital image classification"" "subject:"deigital image classification""
1 |
Classificação de cobertura do solo utilizando árvores de decisão e sensoriamento remotoCelinski, Tatiana Montes [UNESP] 02 December 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:33Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-12-02Bitstream added on 2014-06-13T20:02:19Z : No. of bitstreams: 1
celinski_tm_dr_botfca.pdf: 1773028 bytes, checksum: 4e269402cffb336eabab0615c60d49d5 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho teve por objetivo a discriminação de classes de cobertura do solo em imagens de sensoriamento remoto do satélite CBERS-2 por meio do Classificador Árvore de Decisão. O estudo incluiu a avaliação de combinações de atributos da imagem para melhor discriminação entre classes e a verificação da acurácia da metodologia proposta comparativamente ao Classificador Máxima Verossimilhança (MAXVER). A área de estudo está localizada na região dos Campos Gerais, no Estado do Paraná, que apresenta diversidade quanto aos tipos de vegetação: culturas de inverno e de verão, áreas de reflorestamento, mata natural e pastagens. Foi utilizado um conjunto de dezesseis (16) atributos a partir das imagens, composto por: bandas do sensor CCD (1, 2, 3, 4), índices de vegetação (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), componentes de mistura (solo, sombra, vegetação) e os dois primeiros componentes principais. A acurácia da classificação foi avaliada por meio da matriz de erros de classificação e do coeficiente kappa. A coleta de amostras de verdade terrestre foi realizada utilizando-se um aparelho GPS de navegação para o processo de georreferenciamento, para serem usadas na fase de treinamento dos classificadores e também na verificação da acurácia. O processamento das imagens e a geração dos mapas temáticos foram realizados por meio do Sistema de Informações Geográficas SPRING, sendo as rotinas desenvolvidas na linguagem de programação LEGAL. Para a geração do Classificador Árvore de Decisão foi utilizada a ferramenta See5. Na definição das classes, buscou-se um alto nível discriminatório a fim de permitir a separação dos diferentes tipos de culturas presentes na região nas épocas de inverno e de verão. A classificação por árvore de decisão apresentou uma acurácia total de 94,5% e coeficiente kappa igual a 0,9389, para a cena 157/128; para... / This work aimed to discriminate classes of land cover in remote sensing images of the satellite CBERS-2, using the Decision Tree Classifier. The study includes the evaluation of combinations of attributes of the image to a better discrimination between classes and the verification of the accuracy of the proposed methodology, comparatively to the Maximum Likelihood Classifier (MLC). The geographical area used is situated in the region of the “Campos Gerais”, in the Paraná State, which presents diversities concerning the different kinds of vegetations: summer and winter crops, reforestation areas, natural forests and pastures. It was used a set of sixteen (16) attributes from images, composed by bands of the sensor CCD (1, 2, 3, 4), vegetation indices (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), mixture components (soil, shadow, vegetation) and the two first principal components. The accuracy of the classifications was evaluated using the classification error matrix and the kappa coefficient. The collect of the samples of ground truth was performed using a navigation device GPS to the georeference process to be used in the training stage of the classifiers and in the verification of the accuracy, as well. The processing of the images and the generation of the thematic maps were made using the Geographic Information System SPRING, and the routines were developed in the programming language LEGAL. The generation of the Decision Tree Classifier was made using the tool See5. A high discriminatory level was aimed during the definition of the classes in order to allow the separation of the different kinds of winter and summer crops. The classification accuracy by decision tree was 94.5% and kappa coefficient was 0.9389 to the scene 157/128; to the scene 158/127, it presented the values 88% and 0.8667, respectively. Results showed that the performance of the Decision Tree Classifier was better... (Complete abstract click electronic access below)
|
2 |
Classificação de cobertura do solo utilizando árvores de decisão e sensoriamento remoto /Celinski, Tatiana Montes, 1963- January 2008 (has links)
Orientador: CéliaRegina Lopes Zimback / Banca: Zacarias Xavier de Barros / Banca: Marco Antonio M.Biaggioni / Banca: Marcelo Giovaneti Canteri / Banca: Ivo Mario Mathias / Resumo: Este trabalho teve por objetivo a discriminação de classes de cobertura do solo em imagens de sensoriamento remoto do satélite CBERS-2 por meio do Classificador Árvore de Decisão. O estudo incluiu a avaliação de combinações de atributos da imagem para melhor discriminação entre classes e a verificação da acurácia da metodologia proposta comparativamente ao Classificador Máxima Verossimilhança (MAXVER). A área de estudo está localizada na região dos Campos Gerais, no Estado do Paraná, que apresenta diversidade quanto aos tipos de vegetação: culturas de inverno e de verão, áreas de reflorestamento, mata natural e pastagens. Foi utilizado um conjunto de dezesseis (16) atributos a partir das imagens, composto por: bandas do sensor CCD (1, 2, 3, 4), índices de vegetação (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), componentes de mistura (solo, sombra, vegetação) e os dois primeiros componentes principais. A acurácia da classificação foi avaliada por meio da matriz de erros de classificação e do coeficiente kappa. A coleta de amostras de verdade terrestre foi realizada utilizando-se um aparelho GPS de navegação para o processo de georreferenciamento, para serem usadas na fase de treinamento dos classificadores e também na verificação da acurácia. O processamento das imagens e a geração dos mapas temáticos foram realizados por meio do Sistema de Informações Geográficas SPRING, sendo as rotinas desenvolvidas na linguagem de programação LEGAL. Para a geração do Classificador Árvore de Decisão foi utilizada a ferramenta See5. Na definição das classes, buscou-se um alto nível discriminatório a fim de permitir a separação dos diferentes tipos de culturas presentes na região nas épocas de inverno e de verão. A classificação por árvore de decisão apresentou uma acurácia total de 94,5% e coeficiente kappa igual a 0,9389, para a cena 157/128; para... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This work aimed to discriminate classes of land cover in remote sensing images of the satellite CBERS-2, using the Decision Tree Classifier. The study includes the evaluation of combinations of attributes of the image to a better discrimination between classes and the verification of the accuracy of the proposed methodology, comparatively to the Maximum Likelihood Classifier (MLC). The geographical area used is situated in the region of the "Campos Gerais", in the Paraná State, which presents diversities concerning the different kinds of vegetations: summer and winter crops, reforestation areas, natural forests and pastures. It was used a set of sixteen (16) attributes from images, composed by bands of the sensor CCD (1, 2, 3, 4), vegetation indices (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), mixture components (soil, shadow, vegetation) and the two first principal components. The accuracy of the classifications was evaluated using the classification error matrix and the kappa coefficient. The collect of the samples of ground truth was performed using a navigation device GPS to the georeference process to be used in the training stage of the classifiers and in the verification of the accuracy, as well. The processing of the images and the generation of the thematic maps were made using the Geographic Information System SPRING, and the routines were developed in the programming language LEGAL. The generation of the Decision Tree Classifier was made using the tool See5. A high discriminatory level was aimed during the definition of the classes in order to allow the separation of the different kinds of winter and summer crops. The classification accuracy by decision tree was 94.5% and kappa coefficient was 0.9389 to the scene 157/128; to the scene 158/127, it presented the values 88% and 0.8667, respectively. Results showed that the performance of the Decision Tree Classifier was better... (Complete abstract click electronic access below) / Doutor
|
3 |
Remote sensing for developing an operational monitoring scheme for the Sundarban Reserved Forest, Bangladesh <engl.> / Entwicklung eines operationellen Überwachungsmodells für das Schutzgebiet des Sundarban Mangrovenwaldes in Bangladesh mit Hilfe von FernerkundungsdatenAkhter, Mariam 24 November 2006 (has links) (PDF)
Sundarban Reserved Forest in Bangladesh is playing a significant role in local and national economy and is providing protection to the coastline as well as to the indigenous people. During the past decades and also in recent time this forest was heavily disturbed by human intervention in many aspects. As a consequence the resources of the forest are fragmenting, shrinking and declining, which in turn leads to an increasing failure of satisfying increasing demands both at local and national levels. Therefore accurate and continuously updated spatial information is needed for optimising forest management and environmental planning on both levels to support the fulfilment of urgent needs of sustainability of the forest. Considering the specific topography and the poor accessibility of the forest versus the task of collecting information, remote sensing is an attractive, if not the only means of obtaining sound full-coverage spatial information on forest cover of Sundarban. This research used medium resolution Landsat ETM data of November 2000 and Landsat TM data of January 1989 to assess and monitor the forest for 1. Identification of the operational tools for mapping and monitoring the forest as well as on the examination of the reliability of the application of multitemporal satellite remote sensing data for building spatial databases on forest cover in Sundarban. 2. Based on the existing management plan of the forest as well as the spectral properties of Landsat ETM imagery a level III classification system was developed. 3. This classification strategy was tested by applying several methods to achieve the classification result with the highest accuracy and thus to build the most reliable methodology for mapping forest cover in Sundarban. 4. Forest cover change was assessed for the period of eleven years. Significant changes have been observed due to illegal removal of trees from the forest although a governmental moratorium on banning timber extraction exists since 1989. 5. Development of an operational monitoring scheme by means of multitemporal satellite imagery analysis, which will allow concerned authorities to set up sustainable and appropriate monitoring of the Sundarban Reserved Forest. / Das Schutzgebiet des Sundarban Mangrovenwaldes in Bangladesh spielt eine entscheidende Rolle in Hinsicht auf nationale und lokale sozio-ökonomische und sozio-ökologische Aspekte. Das Waldgebiet stabilisiert nicht nur die Küstenlinie, sondern schützt auch die Bevölkerung vor den Einflüssen von Flutkatastrophen. Durch menschlichen Einfluss wurde die Region während der letzten Jahrzehnte mehr und mehr unmittelbar gestört. Der Rückgang des Ertrags an Ressourcen aus dem Wald führte zu wachsender Unzufriedenheit in der von diesen Nutzungs-möglichkeiten abhängigen Bevölkerung. Um eine Optimierung des Waldmanagements durchführen zu können, werden kontinuierliche und genaue raumbezogene Daten benötigt. Betrachtet man die spezifische Topographie und die schlechte Zugänglichkeit der Waldgebiete, so bietet die Fernerkundung eine attraktive Möglichkeit, raumbezogene Informationen für die großen Flächen des Sundurban Mangrovenwaldes zu erfassen. Zur Analyse und Überwachung der Waldgebiete wurden zwei Satellitenbild-Datensätze mit mittlerer Auflösung verwendet, und zwar Landsat ETM Daten aus dem Jahre 2000 (November) sowie Landsat TM Daten aus dem Jahre 1989 (Januar). Die zentralen Aktivitäten im Rahmen der Bearbeitung der Dissertation beziehen sich auf 1. die Identifikation der notwendigen Werkzeuge für eine erfolgreiche Kartierung und Überwachung der Waldgebiete sowie Untersuchung der Zuverlässigkeit multi-temporaler Fernerkundungsdaten für den Aufbau einer Datenbasis für die Kartierung von Waldbedeckungsarten im Untersuchungsgebiet des Sunderban Mangroven-waldes, 2. die Entwicklung eines Klassifikationssystems nach dem USGS-Schlüssel (Auflösungsebene III) auf Grundlage des existierenden Managementplanes und der spektralen Qualität der Landsat ETM Satellitenbilddaten, 3. den Test der Klassifikationsstrategie durch Adaption unterschiedlicher Methoden und Optimierung in bezug auf Erzielung eines Ergebnisses in maximal erreichbarer Genauigkeit als Ausgangspunkt für den Aufbau einer Methodologie zum Monitoring des Sunderban Mangrovenwaldes, 4. die Extraktion der Veränderungen der Waldbedeckung über ein Zeitintervall von 11 Jahren mit weitreichenden Erkenntnissen zur Dynamik der Degradations-effekte, die hauptsächlich durch illegales Fällen trotz Verbot durch ein Regierungs-memorandum seit 1989 beschleunigt wird, 5. die Entwicklung einer operationellen Monitoring-Struktur mit Hilfe von multi-temporaler Satellitenbildanalyse für ein nachhaltiges und angepasstes raumbezo-genes Management des Sunderban-Mangrovenwaldes.
|
4 |
Remote sensing for developing an operational monitoring scheme for the Sundarban Reserved Forest, Bangladesh <engl.>Akhter, Mariam 02 October 2006 (has links)
Sundarban Reserved Forest in Bangladesh is playing a significant role in local and national economy and is providing protection to the coastline as well as to the indigenous people. During the past decades and also in recent time this forest was heavily disturbed by human intervention in many aspects. As a consequence the resources of the forest are fragmenting, shrinking and declining, which in turn leads to an increasing failure of satisfying increasing demands both at local and national levels. Therefore accurate and continuously updated spatial information is needed for optimising forest management and environmental planning on both levels to support the fulfilment of urgent needs of sustainability of the forest. Considering the specific topography and the poor accessibility of the forest versus the task of collecting information, remote sensing is an attractive, if not the only means of obtaining sound full-coverage spatial information on forest cover of Sundarban. This research used medium resolution Landsat ETM data of November 2000 and Landsat TM data of January 1989 to assess and monitor the forest for 1. Identification of the operational tools for mapping and monitoring the forest as well as on the examination of the reliability of the application of multitemporal satellite remote sensing data for building spatial databases on forest cover in Sundarban. 2. Based on the existing management plan of the forest as well as the spectral properties of Landsat ETM imagery a level III classification system was developed. 3. This classification strategy was tested by applying several methods to achieve the classification result with the highest accuracy and thus to build the most reliable methodology for mapping forest cover in Sundarban. 4. Forest cover change was assessed for the period of eleven years. Significant changes have been observed due to illegal removal of trees from the forest although a governmental moratorium on banning timber extraction exists since 1989. 5. Development of an operational monitoring scheme by means of multitemporal satellite imagery analysis, which will allow concerned authorities to set up sustainable and appropriate monitoring of the Sundarban Reserved Forest. / Das Schutzgebiet des Sundarban Mangrovenwaldes in Bangladesh spielt eine entscheidende Rolle in Hinsicht auf nationale und lokale sozio-ökonomische und sozio-ökologische Aspekte. Das Waldgebiet stabilisiert nicht nur die Küstenlinie, sondern schützt auch die Bevölkerung vor den Einflüssen von Flutkatastrophen. Durch menschlichen Einfluss wurde die Region während der letzten Jahrzehnte mehr und mehr unmittelbar gestört. Der Rückgang des Ertrags an Ressourcen aus dem Wald führte zu wachsender Unzufriedenheit in der von diesen Nutzungs-möglichkeiten abhängigen Bevölkerung. Um eine Optimierung des Waldmanagements durchführen zu können, werden kontinuierliche und genaue raumbezogene Daten benötigt. Betrachtet man die spezifische Topographie und die schlechte Zugänglichkeit der Waldgebiete, so bietet die Fernerkundung eine attraktive Möglichkeit, raumbezogene Informationen für die großen Flächen des Sundurban Mangrovenwaldes zu erfassen. Zur Analyse und Überwachung der Waldgebiete wurden zwei Satellitenbild-Datensätze mit mittlerer Auflösung verwendet, und zwar Landsat ETM Daten aus dem Jahre 2000 (November) sowie Landsat TM Daten aus dem Jahre 1989 (Januar). Die zentralen Aktivitäten im Rahmen der Bearbeitung der Dissertation beziehen sich auf 1. die Identifikation der notwendigen Werkzeuge für eine erfolgreiche Kartierung und Überwachung der Waldgebiete sowie Untersuchung der Zuverlässigkeit multi-temporaler Fernerkundungsdaten für den Aufbau einer Datenbasis für die Kartierung von Waldbedeckungsarten im Untersuchungsgebiet des Sunderban Mangroven-waldes, 2. die Entwicklung eines Klassifikationssystems nach dem USGS-Schlüssel (Auflösungsebene III) auf Grundlage des existierenden Managementplanes und der spektralen Qualität der Landsat ETM Satellitenbilddaten, 3. den Test der Klassifikationsstrategie durch Adaption unterschiedlicher Methoden und Optimierung in bezug auf Erzielung eines Ergebnisses in maximal erreichbarer Genauigkeit als Ausgangspunkt für den Aufbau einer Methodologie zum Monitoring des Sunderban Mangrovenwaldes, 4. die Extraktion der Veränderungen der Waldbedeckung über ein Zeitintervall von 11 Jahren mit weitreichenden Erkenntnissen zur Dynamik der Degradations-effekte, die hauptsächlich durch illegales Fällen trotz Verbot durch ein Regierungs-memorandum seit 1989 beschleunigt wird, 5. die Entwicklung einer operationellen Monitoring-Struktur mit Hilfe von multi-temporaler Satellitenbildanalyse für ein nachhaltiges und angepasstes raumbezo-genes Management des Sunderban-Mangrovenwaldes.
|
Page generated in 0.1333 seconds