Spelling suggestions: "subject:"4digital ontology"" "subject:"deigital ontology""
1 |
O problema do reducionismo no pensamento de Edward Fredkin / The problem of reductionism in Edward Fredkin\'s thoughtDias, William Ananias Vallerio 15 December 2017 (has links)
O estadunidense Edward Fredkin, um pioneiro na área de computação, é conhecido por defender a hipótese do mundo natural ser fundamentalmente um sistema de computação digital se partirmos do princípio de que todas as grandezas físicas são discretas, de modo que cada unidade mínima de espaço e tempo possa assumir apenas uma quantidade finita de estados possíveis. Nesse cenário, as transições de estado do universo nas escalas mais elementares poderiam ser representadas por modelos de autômatos celulares, sistemas computacionais formados de unidades espaciais básicas (células) que modificam seus estados em dependência de uma regra de transição que toma o próprio estado da célula com relação às unidades vizinhas. Quando as mudanças de estados das células são consideradas em escalas maiores, é possível notar um comportamento coletivo que parece seguir uma regra própria, não contemplada na programação básica atuando no nível das células. Fredkin acredita que o nível mais microscópico de nosso universo funcione como um autômato celular e, quando sua computação é tomada em maiores escalas, o padrão coletivo é identificado com os elementos que definimos em nossa física atual como elétrons, moléculas, pedras, pessoas e galáxias, ainda que todos esses elementos macroscópicos sejam apenas o resultado de uma computação alterando estados presentes em unidades mínimas de espaço. Diante disso, a intenção deste trabalho é mostrar que a conjectura de Fredkin pode ser interpretada como uma hipótese reducionista, uma vez que todo sistema explicado por nossas teorias físicas podem ser completamente definidos em termos de uma estrutura computacional. / Edward Fredkin, an American computer pioneer, is known for defending that the natural world be fundamentally a digital computing system, assuming that all physical quantities are discrete, in a way that each unit of space and time can only attain a finite number of possible states. In this scenario, the state transitions of the universe, taking place in the most elementary scales, could be represented by cellular automata models, computer systems formed by basic space units (cells) that modify their states in dependence on a transition rule that takes the state of the cell itself with respect to neighboring units. When cell state changes are considered on larger scales, it is possible to notice a collective behavior that seems to follow a rule of its own, not contemplated in basic programming at the cell level. Fredkin believes that the most microscopic level of our universe works as a cellular automaton and when its computation is taken at larger scales, the collective pattern is identified with the elements we define in our current physics as electrons, molecules, stones, people and galaxies, although all these macroscopic elements are only the result of a computation altering the states in minimum space units. The purpose of this work is to show that Fredkin\'s conjecture can be interpreted as a reductionist hypothesis, since every system explained by our physical theories can be completely defined in terms of a computational structure.
|
2 |
O problema do reducionismo no pensamento de Edward Fredkin / The problem of reductionism in Edward Fredkin\'s thoughtWilliam Ananias Vallerio Dias 15 December 2017 (has links)
O estadunidense Edward Fredkin, um pioneiro na área de computação, é conhecido por defender a hipótese do mundo natural ser fundamentalmente um sistema de computação digital se partirmos do princípio de que todas as grandezas físicas são discretas, de modo que cada unidade mínima de espaço e tempo possa assumir apenas uma quantidade finita de estados possíveis. Nesse cenário, as transições de estado do universo nas escalas mais elementares poderiam ser representadas por modelos de autômatos celulares, sistemas computacionais formados de unidades espaciais básicas (células) que modificam seus estados em dependência de uma regra de transição que toma o próprio estado da célula com relação às unidades vizinhas. Quando as mudanças de estados das células são consideradas em escalas maiores, é possível notar um comportamento coletivo que parece seguir uma regra própria, não contemplada na programação básica atuando no nível das células. Fredkin acredita que o nível mais microscópico de nosso universo funcione como um autômato celular e, quando sua computação é tomada em maiores escalas, o padrão coletivo é identificado com os elementos que definimos em nossa física atual como elétrons, moléculas, pedras, pessoas e galáxias, ainda que todos esses elementos macroscópicos sejam apenas o resultado de uma computação alterando estados presentes em unidades mínimas de espaço. Diante disso, a intenção deste trabalho é mostrar que a conjectura de Fredkin pode ser interpretada como uma hipótese reducionista, uma vez que todo sistema explicado por nossas teorias físicas podem ser completamente definidos em termos de uma estrutura computacional. / Edward Fredkin, an American computer pioneer, is known for defending that the natural world be fundamentally a digital computing system, assuming that all physical quantities are discrete, in a way that each unit of space and time can only attain a finite number of possible states. In this scenario, the state transitions of the universe, taking place in the most elementary scales, could be represented by cellular automata models, computer systems formed by basic space units (cells) that modify their states in dependence on a transition rule that takes the state of the cell itself with respect to neighboring units. When cell state changes are considered on larger scales, it is possible to notice a collective behavior that seems to follow a rule of its own, not contemplated in basic programming at the cell level. Fredkin believes that the most microscopic level of our universe works as a cellular automaton and when its computation is taken at larger scales, the collective pattern is identified with the elements we define in our current physics as electrons, molecules, stones, people and galaxies, although all these macroscopic elements are only the result of a computation altering the states in minimum space units. The purpose of this work is to show that Fredkin\'s conjecture can be interpreted as a reductionist hypothesis, since every system explained by our physical theories can be completely defined in terms of a computational structure.
|
3 |
Catch | Bounce : towards a relational ontology of the digital in art practiceCharlton, James January 2017 (has links)
How might ‘the digital’ be conceived of in an ‘expanded field’ of art practice, where ontology is flattened such that it is not defined by a particular media? This text, together with an installation of art work at the Exhibition Research Lab, Liverpool John Moores University (13-24 March), constitutes the thesis submission as a whole, such that in the practice of ‘reading’ the thesis, each element remains differentiated from the other and makes no attempt to ‘represent’ the other. In negating representation, such practices present a ‘radical’ rethinking of the digital as a differentiated in-itself, one that is not defined solely by entrenched computational narratives derived from set theory. Rather, following Nelson Goodman’s nominalistic rejection of class constructs, ‘the digital’ is thus understood in onto-epistemic terms as being syntactically and semantically differentiated (Languages of Art 161). In the context of New Zealand Post-object Art practices of the late 1960s, as read through Jack Burnham’s systems thinking, such a digitally differentiated ontology is conceived of in terms of the how of practice, rather than what of objects (“Systems Aesthetics”). After Heidegger, such a practice is seen as an event of becoming realised by the method of formal indication, such that what is concealed is brought forth as a thing-in-itself (The Event; Phenomenological Interpretations 26). As articulated through the researcher’s own sculptural practice – itself indebted to Post-object Art – indication is developed as an intersubjective method applicable to both artists and audience. However, the constraints imposed on the thing-in-itself by the Husserlian phenomenological tradition are also taken as imposing correlational limitations on the ‘digital’, such that it is inherently an in-itself for-us and thus not differentiated in-itself. To resolve such Kantian dialectics, the thesis draws on metaphysical arguments put forward by contemporary speculative ontologies – in particular the work of Quentin Meillassoux and Tristan Garcia (After Finitude; Form and Object). Where these contemporary continental philosophies provide a means of releasing events from the contingency of human ‘reason’, the thesis argues for a practice of ‘un-reason’ in which indication is recognized as being contingent on speculation. Practice, it is argued, was never reason’s alone to determine. Instead, through the ‘radical’ method of speculative indication, practice is asserted as the event through which the differentiated digital is revealed as a thing-in-itself of itself and not for us.
|
Page generated in 0.2779 seconds